Multi-Wheel Systems

- Obstacle climbing with multiwheel systems
- Planar rocker analysis
- Planar rocker-bogey analysis
- Suspension dynamics

© 2020 David L. Akin - All rights reserved <http://spacecraft.ssl.umd.edu>

788DF16L10.climbing

1

Slopes & Obstacles

wheel coefficient of friction
with ground = 11 NE normal force to surface $\tau = \mu r N = \mu r W sin \alpha$ $T = \mu N = \frac{\tau}{r} = W \sin \alpha$ U Wess $\mathcal{L} = W$ sin x $tan \alpha = M$

Assume

T>M_{Emit} Nr (friction limited,
not torque limited)

Longitudinal Dynamic Solutions

$$
N_1 = mg \left[\left(1 - \frac{a}{\ell} \right) \cos \theta - \left(\frac{h}{\ell} + \frac{r}{\ell} \right) \sin \theta - \frac{1}{g} \frac{dv}{dt} \right]
$$

$$
N_2 = mg \left[\frac{a}{\ell} \cos \theta + \left(\frac{h}{\ell} + \frac{r}{\ell} \right) \sin \theta + \frac{1}{g} \frac{dv}{dt} \right]
$$

$$
T_2 = \frac{N_2}{N_1 + N_2} \left(mg \sin \theta + m \frac{dv}{dt} \right)
$$

$$
T_1 = \frac{N_1}{N_1 + N_2} \left(mg \sin \theta + m \frac{dv}{dt} \right)
$$

3

Slopes and Static Stability ENAE 788X - Planetary Surface Robotics

Normal and Shear Wheel Force w/Slope

4

Slopes and Static Stability ENAE 788X - Planetary Surface Robotics

Four-Wheeled Vehicle Climbing a Wall

U N I V E R S I T Y O F from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

5

MARYLAND

 $W_{\mathbf{a}}$ ll Climbing $\sum F_{vertical} \Rightarrow N_2 + u N_1 = W$ $\sum F_{\text{hori2}}$ \Rightarrow $\mu N_2 = N_1$ $\leq m$ rear ax $k \Rightarrow M N_1 r + M N_1 (l+r) = W(l-a)$ $N_2 + u^2 N_2 = W \Rightarrow N_2 = \frac{W}{1+u^2} \Rightarrow N_1 = \frac{U}{1+u^2} W$ $\frac{u}{1+u^2}W_r + \frac{u^2}{1+u^2}W(l+r) = W(l-q)$ $(n4)$ μ^2 + r μ - $(l - 4) = 0$

$$
u = \frac{-r \pm \sqrt{r^{2}+4(r+a)(l-a)}}{2(r+a)}
$$

Let $\alpha = \frac{a}{r}$ $\lambda = \frac{l}{r}$

$$
u = \frac{-1 \pm \sqrt{1+4(1+a)(\lambda-a)}}{2(1+a)}
$$

$$
\lambda \rightarrow 0
$$
 $u_{\text{limit}} \rightarrow 0$ $\lambda \rightarrow \infty$ $u_{\text{init}} \rightarrow 1$

Shorter is better!

A
$$
Sh_{out}
$$
 Time Later...
\n Im_{1}
\n Im_{2}
\n Im_{1}
\n Im

Required Traction for Wall Climbing

NIVERSITY OF from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

9

MARYLAND

Wheel Interaction with Slope

Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics U N I V E R S I T Y O F MARYLAND 10 from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

Equations for Slopes under Wheels

Sum of Horizontal forces:

 μ N₂ sin ϕ ₂ + N₂ cos ϕ ₂ + μ N₁ sin ϕ ₁ + N₁ cos ϕ ₁ − W = 0 Sum of vertical forces:

Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics ERSITY OF MARYLAND 11 μ N₂ cos $\phi_2 - N_2 \sin \phi_2 + \mu N_1 \cos \phi_1 - N_1 \sin \phi_1 = 0$ $(\mu N_2r - W(L - a) + N_1L \cos \phi_1 + \mu N_1 (r + L \sin \phi_1) = 0$ Sum of forces around the rear axle:

Bump/Slope Traction Requirements

Multi-Wheel Systems U N I V E R S I T Y O F MARYLAND from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

12

ENAE 788X - Planetary Surface Robotics

Six-Wheel Articulated Body Rover

Model of Six-Wheel Vehicle

Sum of vertical forces:

$$
N_3 + \mu N_2 + N_1 - Wf - Wb = 0
$$

Sum of horizontal forces:

$$
\mu N_3 - N_2 + \mu N_1 = 0
$$

Sum of moments for front body around pitch axis

$$
\mu N_1(r + e) + N_1(a + b + c) + \mu N_2(r + c) + -N_2e - Wf(b + c) = 0
$$

Sum of moments for rear body around pitch axis

14

$$
Wbd + \mu N_3(r + e) - N_3(d + f) = 0
$$

Navtest Rover with Walls and Slopes

15

from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

Six-Wheel Rover, Slope Climbing

ERSITY OF **From Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis,** Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990

16

MARYLAND

Four-Wheel Rocker Suspension

17

Planar Rocker Analysis

 \leq Forces: $N_1 N_2 = W$ \leq Moment (rear ax/e) $\tau_{1} + \tau_{2} + N_{1}$ d cos $\theta = \tau_{0} + W[(l-a)\cos\theta + h\sin\theta]$

 $N, l_{cs}\theta = T_0 - T_1 - T_2 + W[(l-a)cos\theta - h sin\theta]$ $N_i = \frac{\tau_0 - \tau_1 - \tau_2}{\sqrt{\cos \theta}} + W \left(\frac{\sqrt{2} - \theta}{\sqrt{2}} - \frac{L}{\sqrt{2}} t - \theta \right)$ N_2 = W \cdot N, = W $\left(1-\frac{L_0}{\ell}+\frac{L_1}{\ell}tan\theta\right)-\frac{\tau_0-\tau_1-\tau_2}{\ell \omega \theta}$ N_2 = W $\left(\frac{9}{l}+\frac{1}{l} \tan \theta\right)+\frac{\gamma_1+\gamma_2-\gamma_0}{l \omega_1 \theta}$

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

 $\gamma_{0} = wx \Rightarrow \frac{\gamma_{0}}{w} = \frac{x}{\gamma}$

 $T_{whel} = Tr \Rightarrow \frac{T_{whel}}{Wl} = \frac{T}{W} \frac{r}{l}$ \bigodot

Nondinensionalize

 $\frac{N_1}{N_2}$ = $1-\frac{a}{l} - \frac{h}{l}$ $\tan \theta$ + $\left(\frac{X}{l} - \frac{T_1}{W} - \frac{r_1}{W} - \frac{T_2}{W} - \frac{r_2}{l} \right) \frac{1}{\cos \theta}$ $\frac{N_2}{N}$ = $\frac{q}{\rho}$ + $\frac{1}{\rho}$ ten θ + $\left(\frac{T_1}{W}\frac{r_1}{\ell} + \frac{T_2}{W}\frac{r_2}{\ell} - \frac{x}{\ell}\right)$ $\frac{1}{\cos \theta}$

Six-Wheel Rocker-Bogey Suspension

20

Kinematics of Planar Rocker-Bogey

Planar Rocker-Bogey Analysis $N_1 = \mathbf{E} N_B \left(\frac{\lambda_B \cdot a_B}{\lambda_B} - \frac{h_B}{\lambda_B} \cdot \mathbf{L} - \theta_B \right) - \frac{\tau_1 \cdot \tau_2}{\lambda_B \cdot \mu_1 \cdot \rho_B}$ $N_2 = N_8 \left(\frac{g_s}{f_o} + \frac{h_s}{f_o} t_m \theta_s\right) + \frac{\tau_1 + \tau_2}{f_o \sin \theta_s}$ $(\tau_s = 0 \text{ always})$ For rocker $N_{B} = \frac{\tau_{o} - \tau_{3}}{l_{o}cos(\theta_{R}+\theta_{R})} W \left(\frac{l_{R} - \theta_{R}}{l_{R}} - \frac{l_{1R}}{l_{R}} t_{a} - (\theta_{A}t\theta_{R}) \right)$ $N_3 = W\left(\frac{q_e}{f_o} + \frac{h_e}{f_e} \frac{t_{eq}}{f_e}(\theta x^i\theta_i) + \frac{T_3-T_0}{f_e c_0 \theta_e + \theta_{e_0}}\right)$ $\sqrt{\int_{R}^{2}-\int_{B}^{2}}-(\int_{B}^{2}-\theta_{B})=$ $\int_{2}^{2} \theta_{R_{0}}=$ $\int_{0}^{1} \frac{h_{B}}{h_{B}}$ $\frac{ln \ln \frac{2}{\pi}}{1 - \frac{1}{2}e^{-\frac{1}{2}t} - \frac{1}{2}} = \frac{1}{\sqrt{(l_3 + l_5 - q_8)^2 + l_5^2}} = \int_{R} = \frac{\int_{R}}{\frac{1}{2}t} = \frac{1}{\sqrt{2}} = \frac{1}{l_5} + \frac{1}{l_6} = \frac{q_8}{l_7}$

Normalize by W and l_R

 $\frac{N_3}{W} = \frac{a_R}{l_R} + \frac{h_R}{l_R} = (0_R + 0_R) + (\frac{T_3}{W} \frac{r_2}{l_B} \frac{l_B}{l_R} - \frac{X}{l_R} \frac{l_B}{l_R}) - \frac{1}{c_0} (0_R + 0_R)$

 $\frac{N_B}{W} = 1 - \frac{a_R}{I_R} - \frac{h_R}{I_R} \tan (\theta_R + \theta_{R_0}) + (\frac{X}{I_B} \frac{I_B}{I_R} - \frac{T_S}{W} \frac{I_S}{I_B} \frac{I_B}{I_R}) \frac{1}{\cos (\theta_R + \theta_{R_0})}$

 $\frac{N_1}{N_1} = \frac{N_3}{N} \left(1 - \frac{q_g}{f_g} - \frac{h_g}{f_g} \tan \theta_g\right) - \left(\frac{T_1}{W} \frac{r_1}{f_g} + \frac{T_2}{W} \frac{r_2}{f_g}\right) \frac{1}{\cos \theta_g}$ $\frac{N_2}{W} = \frac{N_8}{W} \left(\frac{q_g}{l_g} + \frac{h_g}{l_g} \tan \theta_g \right) + \left(\frac{T_1}{W} \frac{r_1}{l_g} + \frac{T_2}{W} \frac{r_2}{l_g} \right) \frac{1}{C_2} \theta_g$

Suspension Systems - Current planetary rovers (e.g., MER, MSL) have $1:1$ He or no shock absouption - Notional car suspension ed amper) \leftrightarrow \lor \lor \lor one wheel first Analyse $m\ddot{z}+c\dot{z}+kz=c\dot{z}_{0}+kz_{0}$ Undamped fore-free solution $z = 2$ (os $\omega_n t$ $m\ddot{z}$ + $kz = 0$ $-m\omega_{n}^{2}+k=0$ $\dot{z}=-\frac{1}{2}\omega_{n}^{2}cos\omega_{n}t$ $\omega_n = \sqrt{\frac{k}{m}}$

Rover Example $M_{\tau \circ \tau}$ = 500 kg = Wheel $m = \frac{M_{\tau \circ \tau}}{4}$ = 125 kg $d = deflection$ of suspension $\left(af \; rest \right) \sim 0.1m$ E *orth* M_{conn} $k=\frac{F}{d}=\frac{mg}{d}$ 2000 $\frac{N}{n}$ k 12,250 $\frac{m}{n}$ $\omega_n = \sqrt{\frac{k}{m}}$ ω_n ω_n ω_n ω_n ω_n $f_n = \frac{\omega_n}{2\pi}$ 0.64 H_2 $1.6H₂$ f_n derit = citical distance between bungs 4.3_m @lokph f_{eit} 1.8m
(2.8m/su) $=\frac{V}{f}$

Multivheel Analysis Responses to two-wheels hitting a bump b _p *unce* $\frac{1}{2}$ excite both of these mades Equation of Motion
(assuming no dorging)
 k_f (small angles)
front
front $P: i \in \{ \cdot \mid T_{y} \theta + k_{f} \}$ (z-l, θ) + $k_{r} l_{z}$ (z+ $l_{r} \theta$)=0 f ront let $I_y = mr_y$ $r_y = rad_i$ of gyration Salve this set of coupled differential eque $D_i = \frac{k_e + k_r}{m}$ $D_2 = \frac{k_r \hat{J}_2 - k_r \hat{J}_1}{m}$ $D_3 = \frac{k_p \hat{J}_1^2 + k_r \hat{J}_2^2}{T_v}$

Rewrite in terms of D., D2, P3 D_2 = coupling coefficient \ddot{z} + D, z + Dz θ = 0 Equations are independent
if $D_2 = 0 \Rightarrow k_f l_1 = k_r l_2$ $\ddot{\theta} + D_3 \theta + \frac{P_2}{I_y^2}$ 2=0 I_f $D_2=0$, force @ CG only produces bounce $\omega_{n_2}=\sqrt{D_1}$ force elsewhere produces pitch $\omega_{n_{\Theta}} = \sqrt{P_{3}}$ Assume $D_2 \neq O$ θ = Θ cos $\omega_{n}t$ $z = 2 cos \omega_{n} t$ $(D_1 - 4x^2)$ $\frac{1}{2}$ + D_2 $\theta = 0$
 $\frac{D_2}{\sqrt{3}}$ $\frac{1}{2}$ + $(D_3 - 4x^2) \theta = 0$ $\frac{D_2}{\sqrt{3}}$ D_2
 $D_3 - D_2$ ² $\Bigg) = 0$

*ω*2 *ⁿ* ⁼ *^D*¹ ⁺ *^D*³ 2 ± 1 ² (*D*¹ ⁺ *^D*3) 2 − 4 (*D*1*D*³ [−] *^D*² 2 *r*2 *^γ*) *ω*2 *ⁿ*¹ ⁼ *^D*¹ ⁺ *^D*³ 2 + 1 ⁴ (*D*¹ [−] *^D*3) 2 + *D*2 2 *r*2 *γ ω*4 *ⁿ* − (*D*¹ + *D*3)*ω*² *ⁿ* ⁺ (*D*1*D*³ [−] *^D*² 2 *r*2 *^y*) ⁼ ⁰ *ω*2 *ⁿ*² ⁼ *^D*¹ ⁺ *^D*³ ² [−] ¹ ⁴ (*D*¹ [−] *^D*3) 2 + *D*2 2 *r*2 *γ*

 $\overline{}$

 42^2 = 17.33 ± 10.43 $w_{n_1} = 2.63$ " Sec = 0.42 Hz
 $w_{n_2} = 5.67$ " Yec = 0.84 Hz

Add in Tire Mass & Stiffness

$$
\omega_{n}^{4}(m_{u}m_{s}) + \omega_{n}^{2}(m_{s}k_{s} - m_{s}k_{u} - m_{u}k_{s}) + k_{s}k_{u} = 0
$$
\n
$$
\omega_{n_{1}} = \frac{18e^{2} - \sqrt{8^{2} + 4C}}{2A} \qquad \omega_{n_{2}} = \frac{8 + \sqrt{8^{2} + 4C}}{2A}
$$
\n
$$
A = m_{u}m_{s} \qquad B = m_{s}(k_{s} + k_{u}) + m_{u}k_{s} \qquad C = k_{s}k_{u}
$$
\n
$$
E_{x \text{ sample}}: \qquad m_{s} = 100 \text{ kg} \qquad m_{u} = 25 \text{ kg}
$$
\n
$$
k_{s} = 2000 \text{ N/m} \qquad k_{u} = 10,000 \text{ N/m}
$$
\n
$$
A = 2500 \text{ kg} \qquad B = 1.25 \times 10^{1} \text{ kg}^{2}/\text{sr} \qquad C = 2 \times 10^{7} \text{ m}^{2}/\text{m}^{2}
$$
\n
$$
\omega_{n_{1}} = 4.76 \frac{24}{5\pi} \qquad \Rightarrow 0.8 \text{ Hz} \qquad \text{Suyency}
$$
\n
$$
\omega_{n_{2}} = 28.8 \frac{m_{s}d}{5\pi} \qquad \Rightarrow 3.5 \text{ Hz} \qquad \text{where } \frac{5 \text{ H}^{1} \text{ H}^{2} \text{ H}^{3} \text{ H
$$

Wheel-Soil Interaction in Turn $Slip$ ratios $s = \frac{160 - v_x}{\sqrt{162}}$ for driving: $|v \omega| > |v_x|$ $S = \frac{160 - V_x}{V_x}$ for braking: $(60/5)(V_x)$ $5h_{\rho}$ and $\alpha = f_{\rho} \frac{1}{v_{x}}$ -1555 wheel sinker $P(e) = (\frac{he}{b} + k_y) e^n$ $P(\theta) = r(\cos \theta - \cos \theta_1)$ θ_{0} for static sintage, $\theta_f = \theta_f = \theta_s$ $Z(\theta) = r(\cos \theta - \cos \theta_s)$ $P(\theta) = (\frac{k}{b}c + k_{\theta}) r^{n} (c_{\theta}, \theta - c_{\theta}, \theta_{s})^{n}$ Given $weight \mid W$ on $uhae!$ $W = \int_{\theta_3}^{\theta_3} P(\theta) b r \cos \theta d\theta = r^{n+1}(k_c+k_p b) \int_{-\theta_3}^{\theta_3} C(s \cdot \theta - s \cdot \theta_3)^n$ c_{0} , $B_{d}\theta$ $54 - 116$ sinkage $2_5 = r(1-c_{03} \theta_5)$

