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Robotic Mobility – Atmospheric Flight
• Gaseous planetary environments (Mars, Venus, Titan)
• Entry, descent, and landing
• Lighter-than-”air” (balloons, dirigibles)
• Heavier-than-”air” (aircraft, rotorcraft)
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Atmospheric Density with Altitude
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Atmospheric Entry and Flight 
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y  O F
MARYLAND

Exponential Atmospheres
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⇢ = ⇢oe
�h/hs

⇢o = Reference density

hs = Scale height
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Atmospheric Thermal Profiles
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from Justus and Braun, “Atmospheric Environments for Entry, Descent, and Landing”,  
5th International Planetary Probes Workshop, August 2006
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Planetary Atmospheric Density
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from Justus and Braun, “Atmospheric Environments for Entry, Descent, and Landing”,  
5th International Planetary Probes Workshop, August 2006
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Planetary Entry - Physical Data
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Radius  
(km)

 
(km3/sec2)

 
(kg/m3)

hs  
(km)

vesc  
(km/sec)

Earth 6378 398,604 1.217 8.5 11.18

Mars 3393 42,828 0.020 11.1 5.025

Venus 6052 325,600 64.79 15.9 10.37

Titan 2575 8969 5.474 23.93 2.639

µ �o
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Exponential Atmospheric Density Models
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Atmospheric Entry, Descent, and Landing
• Savings in propellant by dissipating entry energy in atmosphere

–  for lunar landing ~2200 m/sec
–  for Mars landing ~500 m/sec

• Requires heat shield/aeroshell, aerodynamic decelerators, etc. 
• Terminology

– Entry covers atmospheric interface through peak heating and deceleration
– Descent covers atmospheric deceleration to subsonic velocity and ground 

proximity
– Landing covers deceleration to touchdown velocity and stable orientation on 

surface

Δv
Δv

8
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Orbital Entry - The Physics
• 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66kW/

kg
• Pure graphite (carbon) high-temperature material: cp=709 J/kg°K
• Orbital energy would cause temperature gain of 45,000°K!
• Survival depends on two factors

– Dumping 99.9% of heat to atmosphere as the entry vehicle passes through 
mitigates stagnation point heating to ~3000°K

– Heat shield to protect payload from residual entry heat

9
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PRE-DECISIONAL DRAFT; For planning and discussion purposes only

Mars Science Laboratory
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Parachute Descent

• Secondary decelerator is Parachute drag 
– Approximately 95% of remaining Kinetic energy is 

dissipated to the atmosphere 

• Viking configuration parachute 
– Larger diameter   (19.7 m vs 16.1 m) 
– Modern materials (kevlar vs. polyester) 

• Deployment conditions 
– Mach number < 2.15 (Viking) 
– Dynamic Pressure < 850 Pa (MER) 
– Deployment AoA @ deploy < 15 deg. (Viking) 

• Parachute scaled to closely match Viking test post 
deployment flight conditions 

– Area ratios 
– On chute ballistic coefficient 
– Area oscillations matched



PRE-DECISIONAL DRAFT; For planning and discussion purposes only

Mars Science Laboratory
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Parachute Deployment
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Viking Parachute Drag Coefficient Model
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from Cruz and Lingard, “Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future”,  
AIAA 2006-6792, AIAA Guidance, Navigation, and Control Conference, August 2006
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Terminal Velocity
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Full form of ODE -
d

�
v2

⇥

d⇤
� hs

� sin ⇥
v2 =

2ghs

⇤

At terminal velocity, v = constant � vT

� hs

� sin ⇥
v2

T =
2ghs

⇤

vT =

s

�2g� sin �
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Viking Terminal Velocity Under Chute
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� =
m

cDA
=

930 kg

0.62
�
⇡
4

�
(16.15 m)2

= 7.322
kg

m2

vT =

s

�2g� sin �

⇢
=

s

�2(3.711 m/s2)(7.322 kg/m2) sin (�30o)

0.02 kg/m3
= 36.9

m

sec

�crit = �⇢ohs

sin �
= �0.02 kg/m3(10, 800 m)

sin (�30o)
= 432

kg

m2
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Terminal Descent

6-DOF Propulsion 
< 1 m/s vert.,< 0.5 m/s hori.

1-DOF Propulsion 
< 10 m/s vert., < 10 m/s hori.
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Atmospheric Neutral Buoyancy
• Given an enclosed volume V of gas with density ρ
• Lift force is V(ρatm-ρ) - must be ≥mg

– on Earth ~1 kg lift/cubic meter of He
– on Mars ~10 gms lift/cubic meter of He

• Horizontal velocity at equilibrium is identical to wind speed
• Interior pressure generally identical to ambient (except for 

superpressure balloons)
• Can generate low density through choice of gas, heating

22
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Buoyancy by Light Gases
• Ideal gas law
• Given same volume and temperature, gas densities scale proportionally 

to molecular weight  
• Mars’ atmosphere is essentially CO2 – 

– He:
– H2:

• Hindenburg airship would have a total lift capacity of 49,900 kg in Mars 
atmosphere and gravity (Earth lift capacity 232,000 kg - factor of 4.6)

n
n = 44

23

PV = nRT

n = 4; �⇢ = 90.3 gm/m3

n = 2; �⇢ = 94.8 gm/m3
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Goodyear Blimp
• Volume 5380 m3

• Empty mass 4252 kg
• Gross mass 5824 kg
• Mars lift 1278 kg

24
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Thermal Balloons (“Montgolfieres”)
• Use ambient gases and thermal difference to create lift
• Ideal gas – gas density inversely proportional to temperature
• Ambient atmospheric temperature on Mars ~200K
• Heat gases to 300K: lift force 33 gm/m3 (about 1/3 of He or H2 balloon)

25
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Dual-Lift Mars Balloon Concept

26

Heinsheimer, Friend, and Siegel, TITAN Systems (http://home.earthlink.net/~rcfriend/mars-33.htm)

http://home.earthlink.net/~rcfriend/mars-33.htm
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Data Collection by Dragging
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Heinsheimer, Friend, and Siegel, “Concepts for Autonomous Flight Control for a Balloon on Mars” NASA 89N15600
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Superpressure Balloons
• Interior pressure greater than external 

ambient
• Envelope is relatively insensitive (in terms 

of volume) to interior pressure changes
• Diurnal temperature changes have minimal 

effect on lift
• Provides stable long-term platform for 

extended flights
• Envelope must be significantly stronger 

(and therefore heavier) than ambient-
pressure balloons

28
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Flight Missions with Balloons
• Venus: Vega - Russian Vega missions put two 

French balloons in Venus atmosphere in 1985
– One died in 56 minutes
– One operated for two days (battery limitations)

• Mars: French dual-balloon system (solar thermal 
balloon tied to He/H2 balloon - gas balloon keeps 
solar balloon off the ground, thermal balloon lifts 
payloads when sun warms envelope) -never flew

29
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Future Concepts – Titan Aerover

30
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NASA Concept for Venus Habitation

31
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“Heavier than Atmosphere” Approaches
• Fixed wing

– Gliders
– Powered

• Propellers
• Jet
• Rocket

• Rotary wing
• Hybrid/Reconfigurable

32
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Dynamic Atmospheric Lift
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L =
1
2
�v2ScL

L =
1
2
�v2ScD

L

D

D =
1
2
�v2ScD

Lift

Drag

Weight

Thrust

For steady, level flight: T = D

W = L = D
L

D
= T

L

D

L = W = mg

T =
W

L/D
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Atmospheric Flight Performance
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D =
1

2
⇢v2ScD

L =
1

2
⇢v2ScL

cD = cDo + cDi = cDo +
c2L

⇡e(AR)

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
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Aspect Ratio

35

Wing area ⌘ S

Aspect ratio ⌘ AR =
b2

S

Oswald e�ciency factor ⌘ e ⇡ 0.9
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Lift Curve

36

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
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Mars Atmosphere

37

⇢ = 0.020
kg

m3

T = 210 K

g = 3.71
m

sec2

R = 188.92
J

kg K

� = 1.2941

Speed of sound a =
p
�RT = 226.6

m

sec
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Aircraft Flight Performance
• U-2 high-altitude spy plane
• Cruises at “70,000+ feet”
• m=18,000 kg
• b=32 m
• S~64 m2

38

U-2 vstall(Mars) = 228.4
m

sec2

vstall =

s
mg

S

2

⇢cL(max)
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Stable Gliding Flight

39

D = mg sin �

mg = W = L =) sin � =
1

L/D

Flight path angle �

High performance glider L/D ⇡ 30

Deploy at 10 km =) Range ⇡ 300 km

V ⇡ 200
m

sec
=) Flight time 25 min
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Powered Flight
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T = ṁ(ve � V )

ve = Exhaust velocity; V = Flight velocity

Power into flow Pf =
ṁ

2

�
v2e � V 2

�

Power into flight Pv = TV

Propulsive e�ciency ⌘prop =
2

1 + ve
V
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Power Required

41

Powered required ⌘ PR = TRV

Thrust required ⌘ TR =
W

cL/cD

L = W =
1

2
⇢V 2ScL V =

s
2W

⇢ScL

PR =
W

cL/cD

s
2W

⇢ScL

PR =

s
2W 3c2D
⇢Sc3L

_ 1

c3/2L /cD
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Power Required with Velocity
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from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
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Minimum Power and Thrust

43

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
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Effect of Altitude on Power

44

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
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Actuator Disk Size

45

Engine intake area A

ṁ = ⇢AV

T = ṁV = ⇢AV (ve � V )

⇢AV (ve � V ) =
W

L/D

A =
W

(L/D)⇢V (ve � V )

T = D =
W

L/D
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Ingenuity – Mars Helicopter (2021)

46
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• Thrust is downwards
• Hovering flight T=W
• Power calculations same as before if L/D=1
• Incline lift vector angle  from verticalβ

Rotorcraft (Quick and Dirty)

47

W = T cos� =) T =
mg

cos�
D = T sin� =) D = mg tan�

1

2
⇢V 2ScD = mg tan� =) V =

s
2mg tan�

⇢ScD
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(Classic) Helicopter Flight Controls
• Cyclic

– Varies the angle of attack of the rotor blades as they rotate around the hub
– Controls horizontal velocity

• Collective
– Varies the angle of attack of all rotor blades simultaneously
– Controls climb/descent

• Tail rotor
– Corrects for the torque required for the rotor blades
– Controls heading angle

• Throttle – engine speed/torque as required for flight

48
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Alternative Vertical Flight Configurations
• Compound helicopter – stub wings for lift in forward flight (AH-56A 

Cheyenne)
• Coaxial – Two counter-rotating rotors, one above the other (Ingenuity)
• Tandem – two counter-rotating rotors separated by fuselage (CH-47 

Chinook)
• Synchropter – two counter-rotating rotors mounted close together at an 

angle and synchronized so they rotate through each other (Kaman K-
MAX)

• Tiltrotors – rotating engines/rotors to provide combination of lift/
forward thrust (V-22 Osprey)

• Multirotors – Three or more rotors (quadcopters)

49
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Differences of Multirotors
• Still utilized counter-rotating rotors to neutralize torque
• Translation accomplished by differential lift rotating thrust vector
• Simpler - no swash plates for collective/cyclic, fixed rotor blades
• Higher disk loading  lower efficiency
• More motors  more chance of failure, but increased potential for 

redundancy to mitigate failure(s)

⟹
⟹

50
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Looking for Equation for Aircraft Range
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E�ciency =
propulsive power

fuel power
=

Tve

ṁfh

�overall =
Tve

ṁfh

dW

dt
= �ṁfg =

�W
L
D

T
ṁf g

dW

dt
=
�Wve

h
g

L
D

Tve
ṁf h

=
�Wve

h
g

L
D �overall

h ⌘ heating value of fuel
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More Aerial Range

52

Rewrite and integrate

dW

W
=

�vedt
h
g

L
D �overall

=⇥ lnW = C � �vet
h
g

L
D �overall

Initial conditions - at t = 0 W = Winit � C = lnWinit

Range =
h

g

L

D
�overall ln

Winit

Wfinal

Range =
V L

D

g SFC
ln

Winit

Wfinal

-->Breguet Range Equation
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Some Notes on Breguet Range Eqn

53

SFC ⌘ Specific Fuel Consumption

For propeller-driven aircraft,

For jet aircraft,

SFC =
mass of fuel

(power)(time)

SFC =
mass of fuel

(thrust)(time)
=

ṁ

T

So SFC =
1
ve
 (for suitable definitions of ve)
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Specific Fuel Consumption 

54

Engine
SFC 

 
 

SFC 
   
 

CF-6 (747) 0.605 17.1x10-6 58,400

J-58 
(SR-71) 1.9 54x10-6 19,000

SSME 7.95 225x10-6 4440

lb( fuel)
hr − lb(thrust)

kg( fuel)
sec − N(thrust)

ve(effective)
m/sec
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Breguet Endurance Equations
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For propeller-driven aircraft,

For jet aircraft,

E =
1

SFC

cL
cD

ln
mo

mf

E =
⌘

SFC

c3/2L

cD

p
2⇢S

✓
1

p
mf

� 1
p
mo

◆


