Robotic Mobility — Atmospheric Flight

e Gaseous planetary environments (Mars, Venus, Titan)
e Entry, descent, and landing
e Lighter-than-"air” (balloons, dirigibles)

e Heavier-than-"air” (aircraft, rotorcraft)
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Atmospheric Density with Altitude

Pressure=the integral of the atmospheric density in
the column above the reference area

>C N h i N
P, = / pgdh = pog / e hsdh = —poghs € "s
p= f(h) > ; - 0
= —pPoghs [O B 1]
Po = poghs
kg
FBarth: p, = 1.226—=; hgy = 7524m;
m
P,(calc) = 90,400 Pa; P,(act) = 101,300 Pa
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Exponential Atmospheres

p = poe "M

0, = Reference density

he = Scale height
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Atmospheric Thermal Profiles
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Planetary Atmospheric Density

800 T N 5
4 \ l— Aerobraking Density
|

'
700 - \ |
'

|
* - Aerocapture Density

Neptune

' _.Tltan

Hei

'
|
|
'
|
'
|
|
'
;
'
.
|
'
'
|
'
|
|

10°"° 10®° 10° 107 10° 10° 10° 10° 102 107 10° 10" 10°
Density, kg/m’

from Justus and Braun, “Atmospheric Environments for Entry, Descent, and Landing”,
5th International Planetary Probes Workshop, August 2006

.  UNIVERSITY OF Atmospheric Entry and Flight

// M ARYL AND 5 ENAE 788X - Planetary Surface Robotics




Planetary Entry - Physical Data
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Exponential Atmospheric Density Models
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Atmospheric Entry, Descent, and Landing

e Savings in propellant by dissipating entry energy in atmosphere
— Av for lunar landing ~2200 m/sec

— Av for Mars landing ~500 m/sec
e Requires heat shield /aeroshell, aerodynamic decelerators, etc.

 Terminology

— Entry covers atmospheric interface through peak heating and deceleration

— Descent covers atmospheric deceleration to subsonic velocity and ground
proximity

— Landing covers deceleration to touchdown velocity and stable orientation on
surface
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Orbital Entry - The Physics

e 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66kW /
kg

e Pure graphite (carbon) high-temperature material: ¢,=709 J/kg°K

e Orbital energy would cause temperature gain of 45,000°K!

e Survival depends on two tactors

— Dumping 99.9% of heat to atmosphere as the entry vehicle passes through
mitigates stagnation point heating to ~3000°K

— Heat shield to protect payload from residual entry heat
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EDL Phase Plot — A Handy Way to Visualize EDL
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Robotic program: No gap so far ....
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How would Humans Land?
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Potential Exploration Architectures

Some possible combinations...
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Parachute Descent w

Mars Science Laborator

 Secondary decelerator is Parachute drag

— Approximately 95% of remaining Kinetic energy is
dissipated to the atmosphere

* Viking configuration parachute
— Larger diameter (19.7 mvs 16.1 m)
— Modern materials (kevlar vs. polyester)

 Deployment conditions
— Mach number < 2.15 (Viking)
— Dynamic Pressure < 850 Pa (MER)
— Deployment AoA @ deploy < 15 deg. (Viking)

 Parachute scaled to closely match Viking test post
deployment flight conditions
— Arearatios
— On chute ballistic coefficient
— Area oscillations matched
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Viking Parachute Drag Coetficient Model

Reference Area = 2206 ft?
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UNIVERSITY OF Atmospheric Entry and Flight

MARYLAND 17 ENAE 788X - Planetary Surface Robotics




Terminal Velocity

Full form of ODE -
d (02) h 5 2ghg

(Y,
dp b sin 7y p

At terminal velocity, v = constant = vp
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Viking Terminal Velocity Under Chute

m 930 kg

e cpA 0.62 (%) (16.15 m)? | m?

293 sin 7y 2(3.711 m/s?)(7.322 kg/m?) sin (—30°) m
VT =— — — 30.9 —
0.02 kg/m? sec

he  0.02 kg/m3(10, 800 k
sin 7y sin (—30°) m?
UNIVERSITY OF Atmospheric Entry and Flight

MARYLAND 9 ENAE 788X - Planetary Surface Robotics



Trade Coverage Example:
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EDL Concept for Blunt Body Mars Lander
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Atmospheric Neutral Buoyancy

e Given an enclosed volume V of gas with density p

o Lift force is V(patm-p) - must be >mg
— on Earth ~1 kg lift/ cubic meter of He

— on Mars ~10 gms lift/ cubic meter of He
e Horizontal velocity at equilibrium is identical to wind speed

e Interior pressure generally identical to ambient (except for
superpressure balloons)

e Can generate low density through choice of gas, heating
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Buoyancy by Light Gases
e Ideal gas law PV = nRT

e Given same volume and temperature, gas densities scale proportionally
to molecular weight n

e Mars’ atmosphere is essentially CO> —n = 44
~ He: n=4; Ap=90.3 gm/m’
~ Hy: n=2; Ap=2948 gm/m’
e Hindenburg airship would have a total lift capacity of 49,900 kg in Mars
atmosphere and gravity (Earth lift capacity 232,000 kg - factor of 4.6)
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Goodyear Blimp

¢ Volume 5380 m3
e Empty mass 4252 kg

e Gross mass 5824 kg
 Mars lift 1278 kg
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Thermal Balloons (“Montgolfieres”)

e Use ambient gases and thermal difference to create lift
e ]deal gas — gas density inversely proportional to temperature

e Ambient atmospheric temperature on Mars ~200K
e Heat gases to 300K: lift force 33 gm/m3 (about 1/3 of He or H; balloon)
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Dual-Lift Mars Balloon Concept

@ DETAILED (|NCL. CONTACT) SENSING
AT WIDE VARIETY OF DISTANT SITES

. ~|Om
© CLOSE-UP IMAGING AND SENSING radivs
ALONG TRACK FROM MORNING TO
EVENING
~ |0 ™

raelvy

| - 22117
* Heinsheimer, Friend, and Siegel, TITAN Systems (http://home.earthlink.net/~rcfriend /matrs-33.htm)
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Data Collection by Dragging

NIGHT WITH NO WIND
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Heinsheimer, Friend, and Siegel, “Concepts for Autonomous Flight Control for a Balloon on Mars” NASA 89N15600
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Superpressure Balloons

e Interior pressure greater than external
ambient

e Envelope is relatively insensitive (in terms
of volume) to interior pressure changes

e Diurnal temperature changes have minimal
effect on lift

* Provides stable long-term platform for
extended flights

 Envelope must be significantly stronger
(and therefore heavier) than ambient-

pressure balloons — _
@ UNIVERSITY OF Atmospheric Entry and Flight
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Flight Missions with Balloons

* Venus: Vega - Russian Vega missions put two
French balloons in Venus atmosphere in 1985

— One died in 56 minutes

— One operated for two days (battery limitations)

e Mars: French dual-balloon system (solar thermal
balloon tied to He /H2 balloon - gas balloon keeps
solar balloon off the ground, thermal balloon lifts
payloads when sun warms envelope) -never flew

UNIVERSITY OF Atmospheric Entry and Flight
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Titan Aerover

Future Concepts
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NASA Concept for Venus Habitation
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“Heavier than Atmosphere” Approaches

e Fixed wing
— Gliders

— Powered

e Propellers
* Jet
e Rocket

* Rotary wing
e Hybrid /Reconfigurable
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Dynamic Atmospheric Lift

Lift 1
2
DraL _;Fhrust D = 5 pU Scp
1
Weight o= §pUQSCL
For steady, level flight: 77 — [) L =W =mg
L L |4
. * L/D
1 L
L= prses—
oL N
W UNIVERSITY OF Atmospheric Entry and Flight
\ )/ M ARYL AND 33 ENAE 788X - Planetary Surface Robotics




Atmospheric Flight Performance

1
L= 5,0@23% ok}

CP-1
00 sea level

1 600 |-
D = =~ pv*Scp

) 400

200 1~

Te . b

( L ‘/.D) max

| | B J
U 100 200 300 400

Voo, ft/s

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989

2
| it

|
Te(AR)
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Aspect Ratio

UNIVERSITY OF

MARYLAND

b = wingspan

Wing area = S

b2
Aspect ratio = AR = 3

Oswald efliciency factor =e = 0.9

Right-wing tip
4 ) '
!
\ J T
Left-wing tip

35
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Lift Curve

Stall due to
flow separation

do
Angle ftor @
Xy =0 maximum ¢y,
stalling angle
of attack
from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
s UNIVERSITY OF Atmospheric Entry and Flight
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Mars Atmosphere

I

R = 188.92
kg K

v = 1.2941

Speed of sound a = \/YRT = 226.6 =
sec
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Aircraft Flight Performance

e U-2 high-altitude spy plane
e Cruises at “70,000+ fteet”

e m=18,000 kg

e b=32m

* 5~64 m?

mg 2
Ustall —
i S PCL(max)

™m

U-2 Ustall(Mars) = 228.4 2

.  UNIVERSITY OF Atmospheric Entry and Flight
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Stable Gliding Flight
Flight path angle ~

D = mgsin-y
1
L/D

mg =W = L > siny =

High performance glider L/D ~ 30

Deploy at 10 km > Range ~ 300 km

V =~ 200 > Flight time 25 min
SEC
UNIVERSITY OF Atmospheric Entry and Flight
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Powered Flight
T =m(ve — V)

v. = Exhaust velocity; V' = Flight velocity

Power into flow P = % (vg % V2>

Power into flicht P, =1V

Propulsive efliciency 1,,0p =

UNIVERSITY OF Atmospheric Entry and Flight
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Power Required
Powered required = Pr = 1RV

W
Thrust required =1x =
cL/cp
1 2W
L=W = —IOVQSCL R -
2 pScr

W 2W
e
CL / cp \| pScr,

5 2W3 ¢4, 1
= G 3 2 3/2
UNIVERSITY OF Atmospheric Entry and Flight
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Power Required with Velocity

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989

. UNIVERSITY OF Atmospheric Entry and Flight

,/ M ARYL AND 47 ENAE 788X - Planetary Surface Robotics



Minimum Power and Thrust

Pr

P
PR
V

/
/7
/’

V min PR V min 'r Voo

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
UNIVERSITY OF Atmospheric Entry and Flight
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Effect of Altitude on Power

Voo

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989
UNIVERSITY OF Atmospheric Entry and Flight
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Actuator Disk Size

Engine intake area A

W
m = pAV L/D
T =mV = pAV (v, — V)
W
AV (v, = V) =
pAV (v, — V) LD
A= i
(L/D)pV(ve = V)

MARYLAND 45 ENAE 788X - Planetary Surface Robotics



Ingenuity — Mars Helicopter (2021)
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Rotorcraft (Quick and Dirty)

e Thrustis downwards
e Hovering flight T=W
e Power calculations same as before if L /D=1

e Incline lift vector angle f from vertical

W =Tcosf —= 1T =
cos?
D=TsinB — D = mgtan (3

myg

1
_oV<Scp =mgtanB =V =
2 pSCD

UNIVERSITY OF Atmospheric Entry and Flight
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(Classic) Helicopter Flight Controls

e Cyclic
— Varies the angle of attack of the rotor blades as they rotate around the hub

— Controls horizontal velocity

o (ollective

— Varies the angle of attack of all rotor blades simultaneously

— Controls climb / descent

e Tail rotor

— Corrects for the torque required for the rotor blades

— Controls heading angle

e Throttle — engine speed /torque as required for flight

UNIVERSITY OF Atmospheric Entry and Flight
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Alternative Vertical Flight Configurations

Compound helicopter — stub wings for lift in forward flight (AH-56A
Cheyenne)

Coaxial — Two counter-rotating rotors, one above the other (Ingenuity)
Tandem — two counter-rotating rotors separated by fuselage (CH-47
Chinook)

Synchropter — two counter-rotating rotors mounted close together at an
angle and synchronized so they rotate through each other (Kaman K-
MAX)

Tiltrotors — rotating engines/rotors to provide combination of lift/
forward thrust (V-22 Osprey)

Multirotors — Three or more rotors (quadcopters)

@ UNIVERSITY OF Atmospheric Entry and Flight
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Differences of Multirotors

o Still utilized counter-rotating rotors to neutralize torque
e Translation accomplished by differential lift rotating thrust vector
e Simpler - no swash plates for collective/ cyclic, fixed rotor blades

e Higher disk loading = lower efficiency

e More motors = more chance of failure, but increased potential for
redundancy to mitigate failure(s)

UNIVERSITY OF Atmospheric Entry and Flight
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Looking for Equation for Aircratt Range

, propulsive power 1'v,
Efficiency = —
fuel power m ¢h

h = heating value of fuel

Tv, dW , —W
TNoverall =— LA L | T
TTth dt By o
W -Wv. — —Wo,
= h L Tu el T

g D msh q Dnoverall

UNIVERSITY OF Atmospheric Entry and Flight
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More Aerial Range

Rewrite and integrate

dW —v.dt

— Vel
W:hL >InW =C =

q D Hoverall q D Hoverall

Initial conditions- at t =0 W = Winit — (' = In Wimt

Raﬂge — D Toverall 111
g Wf nal
L
Range = s In Winit
g SFC Wfina )
-->Breguet Range Equation
) UNIVERSITY OF Atmospheric Entry and Flight
W/ M ARYL AND 59 ENAE 788X - Planetary Surface Robotics




Some Notes on Breguet Range Eqn
SF(C = Specific Fuel Consumption

For propeller-driven aircraft,

mass of fuel

SEFC =
(power)(time)
For jet aircraft,
mass of fuel m
SEFC = , = —
(thrust)(time) T
1
So SFC = — (for suitable definitions of v,)
V@
UNIVERSITY OF Atmospheric Entry and Flight
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Specific Fuel Consumption

SFC SFC |
Engine Ib(fuel) kg(fue) | Veleective
hr — [b(thrust) |sec — N(thrust)
CF-6 (747)|  0.605 17.1x106 | 58,400
J-58 ¥
SR71) 1.9 54x10 19,000
SSME %95 225x10-6 444()

UNIVERSITY OF Atmospheric Entry and Flight
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Breguet Endurance Equations

For propeller-driven aircraft,

UNIVERSITY OF Atmospheric Entry and Flight
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