Robotic Mobility – Atmospheric Flight

- Gaseous planetary environments (Mars, Venus, Titan)
- Entry, descent, and landing
- Lighter-than-"air" (balloons, dirigibles)
- Heavier-than-"air" (aircraft, rotorcraft)

gibles) rcraft)

> © 2024 University of Maryland - All rights reserved <u>http://spacecraft.ssl.umd.edu</u>

Atmospheric Density with Altitude

Pressure=the integral of the atmospheric density in the column above the reference area

 $\rho = f(h)$ $P_o = \int_o^\infty \rho g dh =$

Earth: $\rho_o = 1.226 \frac{kg}{m}$

 ρ_o, P_o

UNIVERSITY OF MARYLAND

$$\rho_{o}g \int_{0}^{\infty} e^{-\frac{h}{h_{s}}} dh = -\rho_{o}gh_{s} \left[e^{-\frac{h}{h_{s}}} \right]_{0}^{\infty}$$
$$= -\rho_{o}gh_{s} \left[0 - 1 \right]$$
$$P_{o} = \rho_{o}gh_{s}$$

$$\frac{g}{3}; h_s = 7524m;$$

 $P_o(calc) = 90,400 Pa; P_o(act) = 101,300 Pa$

Exponential Atmospheres

 $\rho = \rho_o e^{-h/h_s}$

$\rho_o = \text{Reference density}$

$h_s = \text{Scale height}$

Atmospheric Thermal Profiles

4

Planetary Atmospheric Density

Planetary Entry - Physical Data

	Radius (km)	μ (km³/sec²)	ρ ₀ (kg/m³)	h _s (km)	V _{esc} (km/sec)
Earth	6378	398,604	1.217	8.5	11.18
Mars	3393	42,828	0.020	11.1	5.025
Venus	6052	325,600	64.79	15.9	10.37
Titan	2575	8969	5.474	23.93	2.639

UNIVERSITY OF MARYLAND

Exponential Atmospheric Density Models

7

Atmospheric Entry, Descent, and Landing • Savings in propellant by dissipating entry energy in atmosphere

- $-\Delta v$ for lunar landing ~2200 m/sec
- $-\Delta v$ for Mars landing ~500 m/sec
- Requires heat shield / aeroshell, aerodynamic decelerators, etc.
- Terminology
 - Entry covers atmospheric interface through peak heating and deceleration
 - Descent covers atmospheric deceleration to subsonic velocity and ground proximity
 - surface

- Landing covers deceleration to touchdown velocity and stable orientation on

Orbital Entry - The Physics

- kg
- Pure graphite (carbon) high-temperature material: c_p=709 J/kg°K
- Orbital energy would cause temperature gain of 45,000°K!
- Survival depends on two factors
 - Dumping 99.9% of heat to atmosphere as the entry vehicle passes through mitigates stagnation point heating to ~3000°K
 - Heat shield to protect payload from residual entry heat

• 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66 kW/M

EDL Phase Plot – A Handy Way to Visualize EDL

Robotic program: No gap so far

How would Humans Land?

Potential Exploration Architectures

Some possible combinations...

Largest Indivisible Payload Element and Options for Size of the Lander

Parachute Descent

- Secondary decelerator is Parachute drag lacksquare
 - Approximately 95% of remaining Kinetic energy is dissipated to the atmosphere
- Viking configuration parachute lacksquare
 - Larger diameter (19.7 m vs 16.1 m)
 - Modern materials (kevlar vs. polyester)
- Deployment conditions lacksquare
 - Mach number < 2.15 (Viking)
 - Dynamic Pressure < 850 Pa (MER)
 - Deployment AoA @ deploy < 15 deg. (Viking)
- Parachute scaled to closely match Viking test post ulletdeployment flight conditions
 - Area ratios
 - On chute ballistic coefficient
 - Area oscillations matched

Mars Science Laboratory

Parachute Deployment

Mars Science Laboratory

MSL 05-22 40⁰S, 2 km Synthetic Terrain, +/- 0.5 know quat error

Viking Parachute Drag Coefficient Model

from Cruz and Lingard, "Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future", AIAA 2006-6792, AIAA Guidance, Navigation, and Control Conference, August 2006 UNIVERSITY OF MARYLAND **Atmospheric Entry and Flight ENAE 788X - Planetary Surface Robotics** 17

Mach Number

Terminal Velocity

Full form of ODE -

At terminal velocity, $v = \text{constant} \equiv v_T$

 $\frac{d\left(v^2\right)}{d\rho} - \frac{h_s}{\beta\sin\gamma}v^2 = \frac{2gh_s}{\rho}$

 $-\frac{h_s}{\beta\sin\gamma}v_T^2 = \frac{2gh_s}{\rho}$

$$\frac{2g\beta\sin\gamma}{\rho}$$

Viking Terminal Velocity Under Chute

 $\beta = \frac{m}{c_D A} = \frac{930 \ kg}{0.62 \left(\frac{\pi}{4}\right) (16.15 \ m)^2} = 7.322 \ \frac{kg}{m^2}$

 $v_T = \sqrt{-\frac{2g\beta\sin\gamma}{\rho}} = \sqrt{-\frac{2(3.711 \ m/s^2)(7.322 \ kg/m^2)\sin(-30^o)}{0.02 \ kg/m^3}} = 36.9 \ \frac{m}{sec}$

 $\beta_{crit} = -\frac{\rho_o h_s}{\sin \gamma} = -\frac{0.02 \ kg/m^3(10,800 \ m)}{\sin (-30^o)} = 432 \ \frac{kg}{m^2}$

EDL Concept for Blunt Body Mars Lander

<u>Note</u>: There are no deployable decelerators or parachutes. We will be examining options to utilize an LDSD-type SIAD to increase performance.

Peak Deceleration: 6.4 g

Hypersonic Aeromaneuvering

> Supersonic Retropropulsion

> > Powered Descent: Const. V Phase

Ground Acquisition

> Touchdown Vrel < 5 m/s

Atmospheric Neutral Buoyancy

- Given an enclosed volume V of gas with density *ρ*
- Lift force is $V(\rho_{atm}-\rho)$ must be $\geq mg$
 - on Earth ~1 kg lift/cubic meter of He
 - on Mars ~10 gms lift/cubic meter of He
- Horizontal velocity at equilibrium is identical to wind speed Interior pressure generally identical to ambient (except for
- superpressure balloons)
- Can generate low density through choice of gas, heating

Buoyancy by Light Gases

- Ideal gas law PV = nRT
- to molecular weight *n*
- Mars' atmosphere is essentially $CO_2 n = 44$
 - He:
 - $n = 2; \quad \Delta \rho = 94.8 \ gm/m^3$ $- H_2:$
- *Hindenburg* airship would have a total lift capacity of 49,900 kg in Mars atmosphere and gravity (Earth lift capacity 232,000 kg - factor of 4.6)

• Given same volume and temperature, gas densities scale proportionally

 $n = 4; \quad \Delta \rho = 90.3 \ gm/m^3$

Goodyear Blimp

- Volume 5380 m³
- Empty mass 4252 kg
- Gross mass 5824 kg
- Mars lift 1278 kg

ENAE 788X - Planetary Surface Robotics

Thermal Balloons ("Montgolfieres")

- Use ambient gases and thermal difference to create lift
- Ideal gas gas density inversely proportional to temperature
- Ambient atmospheric temperature on Mars ~200K

• Heat gases to 300K: lift force 33 gm/m³ (about 1/3 of He or H₂ balloon)

Dual-Lift Mars Balloon Concept

DETAILED (INCL. CONTACT) SENSING **AT WIDE VARIETY OF DISTANT SITES**

CLOSE-UP IMAGING AND SENSING 0 ALONG TRACK FROM MORNING TO **EVENING**

UNIVERSITY OF MARYLAND

Data Collection by Dragging

Heinsheimer, Friend, and Siegel, "Concepts for Autonomous Flight Control for a Balloon on Mars" NASA 89N15600 UNIVERSITY OF MARYLAND **Atmospheric Entry and Flight ENAE 788X - Planetary Surface Robotics** 27

Superpressure Balloons

- Interior pressure greater than external ambient
- Envelope is relatively insensitive (in terms of volume) to interior pressure changes
- Diurnal temperature changes have minimal effect on lift
- Provides stable long-term platform for extended flights
- Envelope must be significantly stronger (and therefore heavier) than ambientpressure balloons UNIVERSITY OF MARYLAND

ENAE 788X - Planetary Surface Robotics

Flight Missions with Balloons

- Venus: Vega Russian Vega missions put two French balloons in Venus atmosphere in 1985
 - One died in 56 minutes
 - One operated for two days (battery limitations)
- Mars: French dual-balloon system (solar thermal balloon tied to He/H2 balloon - gas balloon keeps solar balloon off the ground, thermal balloon lifts payloads when sun warms envelope) -never flew

ENAE 788X - Planetary Surface Robotics

Future Concepts – Titan Aerover

UNIVERSITY OF MARYLAND

NASA Concept for Venus Habitation

UNIVERSITY OF MARYLAND

Atmospheric Entry and Flight

ENAE 788X - Planetary Surface Robotics

"Heavier than Atmosphere" Approaches

- Fixed wing
 - Gliders
 - Powered
 - Propellers
 - Jet
 - Rocket
- Rotary wing
- Hybrid/Reconfigurable

Dynamic Atmospheric Lift

For steady, level flight:

UNIVERSITY OF MARYLAND

Thrust $D = \frac{1}{2}\rho v^2 S c_D$ $L = \frac{1}{2}\rho v^2 S c_L$ T = D L = W = mg $W = L = D\frac{L}{D} = T\frac{L}{D} \qquad T = \frac{W}{L/D}$ $L = \frac{1}{2}\rho v^2 S c_D \frac{1}{2}$

Atmospheric Flight Performance

 $L = \frac{1}{2}\rho v^2 S c_L$

 $D = \frac{1}{2}\rho v^2 S c_D$

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989

$c_D = c_{Do} + c_{Di} = c_{Do}$

UNIVERSITY OF MARYLAND

 $\pi e(AR)$

Aspect Ratio

Wing area $\equiv S$

Aspect ratio $\equiv AR = \frac{b^2}{S}$

Oswald efficiency factor $\equiv e \approx 0.9$

Lift Curve

36

Mars Atmosphere

 $\rho = 0.020 \ \frac{kg}{m^3}$ T = 210 K $g = 3.71 \ \frac{m}{sec^2}$ $R = 188.92 \quad \frac{J}{kg \ K}$

 $\gamma = 1.2941$

Speed of sound $a = \sqrt{\gamma RT} = 226.6 \frac{m}{---}$ sec

Aircraft Flight Performance

- U-2 high-altitude spy plane
- Cruises at "70,000+ feet"
- m=18,000 kg
- b=32 m
- S~64 m²

 $v_{stall} =$

U-2 $v_{stall}(M)$

$$\frac{mg}{S} \frac{2}{\rho c_{L(max)}}$$

$$ars) = 228.4 \frac{m}{sec^2}$$

Stable Gliding Flight

$mg = W = L \implies \sin \gamma = \frac{1}{L/D}$

High performance glider $L/D \approx 30$ Deploy at 10 km \implies Range $\approx 300 \ km$ $V \approx 200 \xrightarrow{m} \Longrightarrow$ Flight time 25 min sec

UNIVERSITY OF MARYLAND

Flight path angle γ $D = mq \sin \gamma$

Powered Flight

 $T = \dot{m}(v_e - V)$ $v_e = \text{Exhaust velocity}; V = \text{Flight velocity}$ Power into flow $P_f = \frac{m}{2} \left(v_e^2 - V^2 \right)$ Power into flight $P_v = TV$ 2 Propulsive efficiency $\eta_{prop} = \frac{1}{1 + \frac{v_e}{V}}$

Power Required

Powered required $\equiv P_R = T_R V$ Thrust required $\equiv T_R = \frac{W}{c_L/c_D}$ $L = W = \frac{1}{2}\rho V^2 S c_L \qquad V = \sqrt{\frac{2W}{\rho S c_L}}$ $P_R = \frac{W}{c_L/c_D} \sqrt{\frac{2W}{\rho S c_L}}$ $P_{R} = \sqrt{\frac{2W^{3}c_{D}^{2}}{\rho S c_{L}^{3}}} \propto \frac{1}{c_{L}^{3/2}}$ $/c_D$

Power Required with Velocity

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989

ENAE 788X - Planetary Surface Robotics

Effect of Altitude on Power

from Anderson, Introduction to Flight, Third Edition McGraw Hill, 1989

Atmospheric Entry and Flight ENAE 788X - Planetary Surface Robotics

44

Actuator Disk Size

 $\dot{m} = \rho A V$

Engine intake area A $T = D = \frac{W}{L/D}$ $T = \dot{m}V = \rho AV(v_e - V)$ $\rho AV(v_e - V) = \frac{W}{L/D}$ W $(L/D)\rho V(v_e - V)$

Ingenuity – Mars Helicopter (2021)

UNIVERSITY OF MARYLAND

Rotorcraft (Quick and Dirty)

- Thrust is downwards
- Hovering flight T=W
- Power calculations same as before if L/D=1
- Incline lift vector angle β from vertical

UNIVERSITY OF MARYLAND

$W = T\cos\beta \Longrightarrow T = \frac{mg}{\cos\beta}$ $D = T \sin \beta \Longrightarrow D = mg \tan \beta$ $\frac{1}{2}\rho V^2 S c_D = mg \tan\beta \Longrightarrow V = \sqrt{\frac{2mg \tan\beta}{2}}$ $\rho S c_D$

(Classic) Helicopter Flight Controls

• Cyclic

- Varies the angle of attack of the rotor blades as they rotate around the hub
- Controls horizontal velocity
- Collective
 - Varies the angle of attack of all rotor blades simultaneously
 - Controls climb/descent
- Tail rotor
 - Corrects for the torque required for the rotor blades
 - Controls heading angle
- Throttle engine speed / torque as required for flight

Alternative Vertical Flight Configurations

- Cheyenne)
- Chinook)
- Synchropter two counter-rotating rotors mounted close together at an MAX)
- Tiltrotors rotating engines / rotors to provide combination of lift / forward thrust (V-22 Osprey)
- Multirotors Three or more rotors (quadcopters)

UNIVERSITY OF MARYLAND

• Compound helicopter – stub wings for lift in forward flight (AH-56A

 Coaxial – Two counter-rotating rotors, one above the other (Ingenuity) • Tandem – two counter-rotating rotors separated by fuselage (CH-47

angle and synchronized so they rotate through each other (Kaman K-

Differences of Multirotors

- Still utilized counter-rotating rotors to neutralize torque
- Translation accomplished by differential lift rotating thrust vector
- Simpler no swash plates for collective / cyclic, fixed rotor blades • Higher disk loading \implies lower efficiency
- More motors \implies more chance of failure, but increased potential for redundancy to mitigate failure(s)

Looking for Equation for Aircraft Range

 $\text{Efficiency} = \frac{\text{propulsive power}}{\text{fuel power}} = \frac{Tv_e}{\dot{m}_f h}$

 $\frac{dW}{dt} = \frac{-Wv_e}{\frac{h}{g}\frac{L}{D}\frac{Tv_e}{\dot{m}_f h}} = \frac{-Wv_e}{\frac{h}{g}\frac{L}{D}\eta_{overall}}$

 $h \equiv$ heating value of fuel

 $\eta_{overall} = \frac{Tv_e}{\dot{m}_f h} \qquad \frac{dW}{dt} = -\dot{m}_f g = \frac{-W}{\frac{L}{D}\frac{T}{\dot{m}_f g}}$

More Aerial Range Rewrite and integrate

 $\frac{dW}{W} = \frac{-v_e dt}{\frac{h}{g} \frac{L}{D} \eta_{overall}} \Longrightarrow \ln W = C - \frac{-v_e t}{\frac{h}{g} \frac{L}{D} \eta_{overall}}$ Initial conditions - at t = 0 $W = W_{init} \rightarrow C = \ln W_{init}$ Range $= \frac{h}{g} \frac{L}{D} \eta_{overall} \ln \frac{W_{init}}{W_{final}}$ Range = $\frac{V\frac{L}{D}}{g \ SFC} \ln \frac{W_{init}}{W_{final}}$

-->Breguet Range Equation

Some Notes on Breguet Range Eqn

For propeller-driven aircraft,

For jet aircraft,

So $SFC = \frac{1}{v_e}$ (for suitable definitions of v_e) v_e

UNIVERSITY OF MARYLAND

- $SFC \equiv$ Specific Fuel Consumption

 - $SFC = \frac{\text{mass of fuel}}{(\text{power})(\text{time})}$

 $SFC = \frac{\text{mass of fuel}}{(\text{thrust})(\text{time})} = \frac{\dot{m}}{T}$

Specific Fuel Consumption

	Engine	SFC <i>lb(fuel)</i> <i>hr – lb(thrust)</i>	SFC kg(fuel) sec – N(thrust)	v _e (effective) m/sec
	CF-6 (747)	0.605	17.1x10-6	58,400
6	J-58 (SR-71)	1.9	54x10-6	19,000
	SSME	7.95	225x10-6	4440

UNIVERSITY OF MARYLAND

Breguet Endurance Equations

For propeller-driven aircraft,

For jet aircraft,

 $E = \frac{\eta}{SFC} \frac{c_L^{3/2}}{c_D} \sqrt{2\rho S} \left(\frac{1}{\sqrt{m_f}} - \frac{1}{\sqrt{m_o}}\right)$

 $E = \frac{1}{SFC} \frac{c_L}{c_D} \ln \frac{m_o}{m_f}$

