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Steering Forces/Slopes and Static Stability
• Side forces on wheel
• Power comparison between skid-steer and ideally steered
• Stability across and along slopes
• Forces and torques on wheels
• Acceleration/deceleration
• Turning
• Hitting obstacles
• Rigid suspensions and obstacles
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Skidding Forces and Power
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Side force ⌘ Fs = µsN

Normal force into soil ⌘ N↵

Fs

Total wheel power ⌘ Pw = v(R+ µsN sin↵)

R =  total wheel resistance  < N >

v, R

v, R

 Skid power Ps = Fsvs = μsNv sin α

 Drive power Pr = Rv <
Nm
sec

> = < W >
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Wheel Drive Power
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We can define R = µrN

Pw = vN(µr + µs sin↵)

Pw = vµrN(1 +
µs

µr
sin↵)

Pw = Proll(1 +
µs

µr
sin↵)

Proll ⌘ vµrN

For roads =) µr ⇡ 0.05 or less

O↵-road =) µr ⇡ 0.2; µs ⇡ 1
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Turn-in-Place (Skid Steering)
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Pskid = Proll  if 
μs

μr
sin α = 1

μs

μr
∼ 5 ⟹ sin α = 0.2 ⟹ α = 11.5o

rturn = ( c
2 )

2

+ ( l
2 )

2

Turn in place (skid steer)

cos β =
c/2
rturn

sin β =
l/2
rturn

β
rturn

l

c
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Power Required for TIP Skid Steering
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Vr = ωrturn cos β =
ωc
2

Vs = ωrturn sin β =
ωℓ
2

Proll = VrμrN =
ωc
2

μrN

Pskid = VsμsN =
ωl
2

μsN

Pw = ωN ( c
2

μr +
l
2

μs) =
ωN
2 (cμr + lμs)
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Turn in Place (Skid vs. Steered)
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β
rturn

l

c

Pw = ωrturnμrN

Pskid

Psteer
=

ωN
2 (cμr + lμs)

ωrturnμrN

=
1
2

c + l
μs

μr

rturn
=

1
2

c + l
μs

μr

( c
2 )

2
+ ( l

2 )
2

Turn in place (steered)
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Effect of Wheelbase on Skid Steering Power
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Pskid

Psteer
=

c +
μs

μr
l

c2 + l2

μs

μr
∼ 5 ⟹  Skid power goes up with l

Pskid

Psteered
⟶ 1 for l ⟶ 0
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Skid Steering around a Turn
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r

riro
V

ω

subscript (i) refers to wheel on inside of turn
subscript (o) refers to wheel on outside of turn

ri = (r −
c
2 )

2

+ ( l
2 )

2

ro = (r +
c
2 )

2

+ ( l
2 )

2

V = ωr

vo = ωro = ω (r +
c
2 )

2

+ ( l
2 )

2

vi = ωri = ω (r +
c
2 )

2

+ ( l
2 )

2

αo vo αi vi
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Skid Steering around a Turn
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r

riro
V

ω

cos αo =
r + c

2

ro
sin αo =

l/2
ro

cos αi =
r − c

2

ri
sin αi =

l/2
ri

αo αivo vi

vr,o = ωro cos αo = ωro

r + c
2

ro
= ω (r +

c
2 )

vs,o = ωro sin αo = ωro
l/2
ro

= ω
l
2

vr,i = ωri cos αi = ωri

r − c
2

ri
= ω (r −

c
2 )

vs,i = ωri sin αi = ωri
l/2
ri

= ω
l
2
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Power Required for Turning Skid Steer
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Pr,o = vr,o μr No = ω (r +
c
2 ) μr No = V (1 +

c
2r ) μr No

Ps,o = vs,o μs No =
ωl
2

μs No =
Vl
2r

μs No

Pw,o = ωNo [(r +
c
2 ) μr +

l
2

μs] = V [(1 +
c
2r ) μr +

l
2r

μs] No

Pr,i = V (1 −
c
2r ) μr Ni

Ps,i =
Vl
2r

μs Ni

Pw,i = V [(1 −
c
2r ) μr +

l
2r

μs] Ni
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Double Ackermann Steering around a Turn
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r

riro
V

ω

αo vo αi vi Pw,o = ωr0μrNo =
V
r (r +

c
2 )

2

+ ( l
2 )

2

μrNo

= V (1 +
c
2r )

2

+ ( l
2r )

2

μrNo

Pw,i = V (1 −
c
2r )

2

+ ( l
2r )

2

μrNi

Ptotal = 2 (Pw,o + Pw,i)
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Single Ackermann Steering
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vo,f = ωro,f = ω (r +
c
2 )

2

+ l2

subscript ( f ) refers to front wheel
subscript (r) refers to rear wheel

vi,f = ωri,f = ω (r −
c
2 )

2

+ l2

vo,r = ωro,r = ω (r +
c
2 )

vi,r = ωri,r = ω (r −
c
2 )
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Turning Power Required with Single Ackermann
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Pw,of = vr,of μr Nof = ω (r +
c
2 )

2

+ l2 μr Nof = V (1 +
c
2r )

2

+ ( l
r )

2

μr Nof

Pw,if = V (1 −
c
2r )

2

+ ( l
r )

2

μr Nif

Pw,or = V (1 +
c
2r ) μrNor

Pw,ir = V (1 −
c
2r ) μrNir

Ptotal = Pw,of + Pw,if + Pw,or + Pw,ir



Steering Forces/Slopes and Static Stability 
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y  O F
MARYLAND

Rover with CG and Force Vector
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mg

C.G.

Stability Region

Rover is stable so long as 
gravitational force vector 
passes inside the stability 
region formed by the 
contact points of  the 
suspension with the ground
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Rover on Cross Slope
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Nearing limits of  
static stability

Exceeding limits 
of  static stability
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Rover Climbing/Descending Slope
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Nearing limits of  
static stability

Exceeding limits 
of  static stability
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Slopes and Obstacles
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µ ⌘ Wheel coe�cient of friction with ground

N ⌘ normal force to surface

T ⌘ wheel thrust = µN

Assume ⌧ > µlimitNr (friction limited, not torque limited)

T =
⌧

r
= W sin ✓

µW cos ✓ = W sin ✓

tan ✓ = µ

⌧ = µrN = µrW sin ✓

θ

W

W sin θ

W cos θ

N

T
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Rover Climbing/Descending Slope
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`

N1

ah
r

T1T2

N2 mg mg

N2
T2

T1 N1

a

`
h

r ✓

X
Forces ? to surface

N1 +N2 = mg cos ✓ T1 + T2 = mg sin ✓

X
Forces k to surface

X
Torques about rear axle

T1r + T2r +N1` = mg [(`� a) cos ✓ � h sin ✓]
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Static Equilibrium Conditions
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T1 + T2 = mg sin ✓

X
Forces ? to surface

X
Torques about rear axle

Friction forces proportional to force into surface

X
Forces k to surface

Four equations, four unknowns

T1

N1
=

T2

N2

N1 +N2 = mg cos ✓

T1r + T2r +N1` = mg [(`� a) cos ✓ � h sin ✓]
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Static Equilibrium Solutions
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N1 = mg

⇣
1� a

`

⌘
cos ✓ �

✓
h

`
+

r

`

◆
sin ✓

�

N2 = mg


a

`
cos ✓ +

✓
h

`
+

r

`

◆
sin ✓

�

T2 =
N2

N1 +N2
mg sin ✓

T1 =
N1

N1 +N2
mg sin ✓
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LRV Three-View and Dimensions
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Loaded LRV Weight Distribution
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`

N1

a h
r

T1 T2

N2mg

` = 228.6 cm

r = 40.6 cm

a = 114.3 cm

h = 50.8 cm

m = 690 kg

b = 22.9 cm

N1 = N2 = 279.8 N

mg = 1120 N

c = 183 cm
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N1

mg

N2

mg

T2

mg

T1

mg
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Acceleration
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Acceleration: “0-60 mph in X seconds”
60 mph = 88 ft/sec = 26.8 m/sec

dV

dt

⇣ m

sec2

⌘
Total accel (g’s)

7 3.83 1.07
6 4.47 1.10
5 5.36 1.14
4 6.70 1.21

Time (sec)

mg
m
dV

dtatot atot =

s

g2 +

✓
dV

dt

◆2
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Longitudinal Dynamic Conditions
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X
Forces ? to surface

X
Torques about rear axle

Friction forces proportional to force into surface

X
Forces k to surface

Four equations, four unknowns

T1

N1
=

T2

N2

N1 +N2 = mg cos ✓ T1 + T2 = mg sin ✓ +max

T1r + T2r + N1ℓ + maxh = mg[(ℓ − a)cos θ − h sin θ]
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Longitudinal Dynamic Solutions
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T2 =
N2

N1 +N2
(mg sin ✓ +max)

T1 =
N1

N1 +N2
(mg sin ✓ +max)

N1 = mg [(1 −
a
ℓ ) cos θ − ( h

ℓ
+

r
ℓ ) sin θ − ( h

ℓ
−

r
ℓ ) ax

g ]
N2 = mg [ a

ℓ
cos θ + ( h

ℓ
+

r
ℓ ) sin θ + ( h

ℓ
−

r
ℓ ) ax

g ]
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N1

mg

N2

mg

T2

mg

T1

mg
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Apollo LRV Full Slope Range, Static Case
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Apollo LRV Slope Forces
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Overturn Limits
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tan ✓limit =

�
1� a

`

�
�
h
` + r

`

� =
`� a

h+ r

⇣
1� a

`

⌘
cos ✓limit =

✓
h

`
+

r

`

◆
sin ✓limit

For the static case (ax = 0)

(1 −
a
ℓ ) cos θlimit − ( h

ℓ
+

r
ℓ ) sin θlimit =

h − r
ℓ

ax

g

 Limiting accel on flat ground  ⇒ ax,limit =
g(ℓ − a)

r + h
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Limiting Slope Under Acceleration
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ax
g

✓limit
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Deceleration
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V = 60 mph, ` = 4m =) 24 m to stop

s =
1

2
at2; v = at =) s =

1

2

v2

a
=) a =

1

2

v2

s

adecel =
(26.8 m/sec)2

2(24m)
= 14.96

m

sec

Deceleration: “Leave one car length per 10 mph”

for Earth, g = 9.8
m

sec2
=) atot = 1.84 g
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Deceleration Stability Limits (Level Ground)
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h

r g

dv
dt a

h + r
=

1
g

dv
dt

Earth 1.53 0.255

Mars 4.03 0.658

Moon 9.38 1.56

v = 10 mph
dv
dt

= 2.5
m

sec2

( a
h + r )

limit

v = 60 mph
dv
dt

= 15
m

sec2

( a
h + r )

limit
Less stable in lower gravity

60 mph panic stop on Earth= 
10 mph panic stop on Moon

For given 
a

h + r
:

a
h + r limit

∝ g

Smin ∝
1
g

60 mph panic stop on Moon requires 147 m

a

Distance – CG to front wheel
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Inertially-Limited Acceleration
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h

r
mg

m
dv
dt

τ = Tr

T

ℓ
aτ

τ
T = m

dv
dt

τ = rm
dv
dt

∑ moments about rear axle at torque limit

τ + hm
dv
dt

= mg(ℓ − a)

rm
dv
dt

+ hm
dv
dt

= mg(ℓ − a)

dv
dt

lim

= g
ℓ − a
r + h
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Inertially-Limited Acceleration
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Lunar Roving Vehicle:

ℓ = 2.29 m
r = 0.41 m
h = 0.51 m
a = 1.14 m

dv
dt

lim

= 1.25g

= 2.0
m

sec2
 (Moon)

= 12.3
m

sec2
 (Earth)

Moon: 0 → 10 kph (2.78 m/sec) ⇒ 1.4 sec
0 → 60 mph (26.8 m/sec) ⇒ 13.4 sec


