

Steering Forces/Slopes and Static Stability

- Side forces on wheel
- Power comparison between skid-steer and ideally steered
- Stability across and along slopes
- Forces and torques on wheels
- Acceleration/deceleration
- Turning
- Hitting obstacles
- Rigid suspensions and obstacles

1

© 2022 David L. Akin - All rights reserved <http://spacecraft.ssl.umd.edu>

U N I V E R S I T Y O F MARYLAND

 $>$ $=$ $<$ W $>$

Skidding Forces and Power Side force $\equiv F_s = \mu_s N$ α_i Normal force into soil $\equiv N$ *Fs* Total wheel power $\equiv P_w = v(R + \mu_s N \sin \alpha)$ $R =$ total wheel resistance $\langle N \rangle$ *v*, *R* γ , R Skid power $P_s = F_s v_s = \mu_s N v \sin \alpha$ Drive power $P_r = R v$ *Nm* sec

We can define $R = \mu_r N$ $P_w = vN(\mu_r + \mu_s \sin \alpha)$ $P_w = v \mu_r N(1 + \frac{\mu_s}{\mu_s})$ *µr* $\sin\alpha)$ $P_w = P_{roll}(1 + \frac{\mu_s}{\mu_s})$ *µr* $\sin\alpha)$ $P_{roll} \equiv v \mu_r N$ For roads $\implies \mu_r \approx 0.05$ or less Off-road $\implies \mu_r \approx 0.2; \ \mu_s \approx 1$

Wheel Drive Power

Steering Forces/Slopes and Static Stability ENAE 788X - Planetary Surface Robotics

$\sin \alpha = 1$

Turn-in-Place (Skid Steering)

l/2 *rturn*

 $V_r = \omega r_{turn} \cos \beta =$ *ωc* 2 $V_s = \omega r_{turn} \sin \beta =$ *ωℓ* 2 *ωc* $\overline{2}$ $\mu_r N$ *ωl* $\overline{2}$ $\mu_s N$ *l* 2 μ _{*s*} $\left| \right|$ = *ωN* $\frac{1}{2}$ $(c\mu_r + l\mu_s)$

Power Required for TIP Skid Steering

 $P_{roll} = V_r \mu_r N =$

 $P_{skid} = V_s \mu_s N =$

 $P_w = \omega N$ *c* 2 μ_r +

ωN $\frac{2}{2}$ $(c\mu_r + l\mu_s)$

 $\omega r_{turn} \mu_r N$

Turn in Place (Skid vs. Steered)

6

 $\frac{1}{\lambda}$ 1 2 *c* + *l μs μr rturn* = 1 2 $c +$ *μs μr* $\overline{}$ *c* $\frac{1}{2}$ 2 + (*l* $\frac{1}{2}$ 2

Pskid

Psteer

=

Turn in place (steered)

 $P_w = \omega r_{turb} \mu_r N$

Effect of Wheelbase on Skid Steering Power

Pskid

Psteer

$$
= \frac{c + \frac{\mu_s}{\mu_r}l}{\sqrt{c^2 + l^2}}
$$

μs μr Pskid

∼ 5 ⟹ Skid power goes up with *l*

\rightarrow 1 for $l \rightarrow 0$

Psteered

subscript (*i*) refers to wheel on inside of turn subscript (*o*) refers to wheel on outside of turn $V = \omega r$

Skid Steering around a Turn

$$
r_o = \sqrt{\left(r + \frac{c}{2}\right)^2 + \left(\frac{l}{2}\right)^2}
$$

$$
r_i = \sqrt{\left(r - \frac{c}{2}\right)^2 + \left(\frac{l}{2}\right)^2}
$$

$$
v_o = \omega r_o = \omega \sqrt{\left(r + \frac{c}{2}\right)^2 + \left(\frac{l}{2}\right)^2}
$$

$$
v_i = \omega r_i = \omega \sqrt{\left(r + \frac{c}{2}\right)^2 + \left(\frac{l}{2}\right)^2}
$$

Skid Steering around a Turn

$$
\cos \alpha_o = \frac{r + \frac{c}{2}}{r_o} \qquad \sin \alpha_o = \frac{l/2}{r_o}
$$

\n
$$
\cos \alpha_i = \frac{r - \frac{c}{2}}{r_i} \qquad \sin \alpha_i = \frac{l/2}{r_i}
$$

\n
$$
v_{r,o} = \omega r_o \cos \alpha_o = \omega r_o \frac{r + \frac{c}{2}}{r_o} = \omega \left(r + \frac{v_{r,o}}{r_o} \right)
$$

\n
$$
v_{s,o} = \omega r_o \sin \alpha_o = \omega r_o \frac{l/2}{r_o} = \omega \frac{l}{2}
$$

\n
$$
v_{r,i} = \omega r_i \cos \alpha_i = \omega r_i \frac{r - \frac{c}{2}}{r_i} = \omega \left(r - \frac{c}{2} \right)
$$

\n
$$
v_{s,i} = \omega r_i \sin \alpha_i = \omega r_i \frac{l/2}{r_i} = \omega \frac{l}{2}
$$

Power Required for Turning Skid Steer

$$
P_{r,o} = v_{r,o} \mu_r N_o = \omega \left(r + \frac{c}{2} \right) \mu_r N_o = V \left(1 + \frac{c}{2r} \right) \mu_r N_o
$$

$$
P_{s,o} = v_{s,o} \mu_s N_o = \frac{\omega l}{2} \mu_s N_o = \frac{V l}{2r} \mu_s N_o
$$

$$
\mu_r N_o = \omega \left(r + \frac{c}{2} \right) \mu_r N_o = V \left(1 + \frac{c}{2r} \right) \mu_r N_o
$$

$$
P_{s,o} = v_{s,o} \mu_s N_o = \frac{\omega l}{2} \mu_s N_o = \frac{V l}{2r} \mu_s N_o
$$

 $P_{w,o} = \omega N_o \mid (r +$ *c* $\left(\frac{1}{2}\right)$ μ_r +

 $P_{r,i} = V$

 $P_{s,i} =$

$$
\frac{l}{2}\mu_s = V \left[\left(1 + \frac{c}{2r} \right) \mu_r + \frac{l}{2r} \mu_s \right] N_o
$$

$$
\left(1-\frac{c}{2r}\right)\mu_r N_i
$$

$$
P_{w,i} = V \left[\left(1 - \frac{c}{2} \right) \right]
$$

$$
\frac{VI}{2r} \mu_s N_i
$$

$$
-\frac{c}{2r} \mu_r + \frac{1}{2r} \mu_s N_i
$$

Double Ackermann Steering around a Turn

11

$$
P_{w,o} = \omega r_0 \mu_r N_o = \frac{V}{r} \sqrt{\left(r + \frac{c}{2}\right)^2 + \left(\frac{l}{2}\right)^2}
$$

$$
= V \sqrt{\left(1 + \frac{c}{2r}\right)^2 + \left(\frac{l}{2r}\right)^2} \mu_r N_o
$$

$$
P_{w,i} = V \sqrt{\left(1 - \frac{c}{2r}\right)^2 + \left(\frac{l}{2r}\right)^2} \mu_r N_i
$$

$$
P_{total} = 2\left(P_{w,o} + P_{w,i}\right)
$$

Single Ackermann Steering

subscript (*f*) refers to front wheel subscript (*r*) refers to rear wheel

$$
v_{o,f} = \omega r_{o,f} = \omega \sqrt{\left(r + \frac{c}{2}\right)^2 + l^2}
$$

$$
v_{i,f} = \omega r_{i,f} = \omega \sqrt{\left(r - \frac{c}{2}\right)^2 + l^2}
$$

$$
v_{o,r} = \omega r_{o,r} = \omega \left(r + \frac{c}{2}\right)
$$

$$
v_{i,r} = \omega r_{i,r} = \omega \left(r - \frac{c}{2}\right)
$$

 $P_{w,of} = v_{r,of} \mu_r N_{of} = \omega \sqrt{r+1}$ *c* $\overline{2}$) 2

Turning Power Required with Single Ackermann

$$
+ l2 \mu_r N_{of} = V \sqrt{\left(1 + \frac{c}{2r}\right)^2 + \left(\frac{l}{r}\right)^2} \mu_r N_{of}
$$

 $P_{w,or} = V(1 +$

$$
\frac{c}{2r}\bigg)^2 + \left(\frac{l}{r}\right)^2 \mu_r N_{if}
$$

$$
\left(1 + \frac{c}{2r}\right) \mu_r N_{or}
$$

Pw,*ir*

 $P_{total} = P_{w,of} +$

$$
= V \left(1 - \frac{c}{2r} \right) \mu_r N_{ir}
$$

$$
P_{w,if} + P_{w,or} + P_{w,ir}
$$

Rover with CG and Force Vector

Rover is stable so long as gravitational force vector passes inside the stability region formed by the contact points of the suspension with the ground

Rover on Cross Slope

static stability

of static stability

Rover Climbing/Descending Slope

U N I V E R S I T Y O F MARYLAND

 $\mu \equiv$ Wheel coefficient of friction with ground $N \equiv$ normal force to surface $T \equiv$ wheel thrust $= \mu N$ τ *r* $= W \sin \theta$ $\tau = \mu r N = \mu r W \sin \theta$

 μ *W* cos $\theta = W \sin \theta$

Assume $\tau > \mu_{limit} Nr$ (friction limited, not torque limited)

Slopes and Obstacles

 $T =$

 $\tan \theta = \mu$

 T_1 *N*₁

r $\left(\frac{1}{2}\right)$

*N*² T_{2} $\sum\limits_{N_1+N_2}\text{Forces}\perp\text{to surface} \ N_1+N_2=mg\cos\theta$ $T_1 + T_2 = mg \sin \theta$ \vert Forces $\vert\vert$ to surface Torques about rear axle

 $T_1r + T_2r + N_1\ell = n$

U N I V E R S I T Y O F

MARYLAND

$$
ng\left[(\ell-a)\cos\theta-h\sin\theta\right]
$$

Rover Climbing/Descending Slope

a

h

 ℓ

Static Equilibrium Conditions $N_1 + N_2 = mg\cos\theta$ $T_1 + T_2 = mg\sin\theta$ $\sum\text{Forces }\perp\text{ to surface }\sum\text{Forces }\parallel\text{ to surface}$

$T_1r + T_2r + N_1\ell = mg[(\ell - a)\cos\theta - h\sin\theta]$

XTorques about rear axle

Friction forces proportional to force into surface

Four equations, four unknowns

*T*1

*N*¹

= *T*2 *N*²

Static Equilibrium Solutions

 $N_1 = mg$ [[] $1 - \frac{a}{\ell}$ ℓ \setminus $\cos\theta -$ ✓*h* $\frac{1}{\ell}$ + *r* ℓ ◆ $\sin\theta$ $\overline{}$ $N_2 = mg$ *a* $\frac{a}{\ell} \cos \theta +$ ✓*h* $\frac{1}{\ell}$ + *r* ℓ ◆ $\sin\theta$ $\overline{1}$ $T_2 =$ *N*² $N_1 + N_2$ $mg\sin\theta$ $T_1 =$ *N*¹ $N_1 + N_2$ $mg\sin\theta$

LRV Three-View and Dimensions

Loaded LRV Weight Distribution

 $\ell = 228.6$ *cm r* = 40*.*6 *cm a* = 114*.*3 *cm h* = 50*.*8 *cm* $m = 690 kg$ $b = 22.9$ *cm* $N_1 = N_2 = 279.8$ *N* $mg = 1120 N$ *c* = 183 *cm*

Normal and Shear Wheel Force w/Slope

Acceleration

Longitudinal Dynamic Conditions $\sum\text{Forces }\perp\text{ to surface }\sum\text{Forces }\parallel\text{ to surface}$ $N_1 + N_2 = mg\cos\theta$ $T_1 + T_2 = mg\sin\theta + ma_x$

XTorques about rear axle

 $T_1r + T_2r + N_1\ell + ma_xh = mg[(\ell - a)\cos\theta - h\sin\theta]$

Friction forces proportional to force into surface

Four equations, four unknowns

*T*1

*N*¹

=

*T*2

*N*²

Longitudinal Dynamic Solutions

 $N_1 = mg \left(1 - \frac{a}{\ell}\right)$ $\frac{1}{\ell}$) cos θ – (

 $N_2 = mg$ *a ℓ* $\cos\theta +$

 $T_2 =$ *N*² $N_1 + N_2$

 $T_1 =$ *N*¹ $N_1 + N_2$

h ℓ + *r* $\frac{1}{\ell}$) sin θ – ($\left(\frac{h}{e} - \frac{r}{e}\right)$ *ax g*]

h ℓ + *r* $\frac{1}{\ell}$) sin θ + ($\left(\frac{h}{\ell} - \frac{r}{\ell}\right)$ *ax g*]

$(mg\sin\theta + ma_x)$

 $(mg\sin\theta + ma_x)$

Normal and Shear Wheel Force w/Slope

Apollo LRV Full Slope Range, Static Case

Apollo LRV Slope Forces

U N I V E R S I T Y O F MARYLAND

Overturn Limits

 $\left(1-\frac{a}{\ell}\right)$ $\left(\frac{1}{e}\right)$ cos θ _{*limit* –}

$\left(1-\frac{a}{\rho}\right)$ ℓ \setminus $\cos\theta_{limit} =$

 $\tan \theta_{limit} =$

Limiting accel on flat ground $\Rightarrow a_{x,limit} = -1$

$$
\frac{\left(1-\frac{a}{\ell}\right)}{\left(\frac{h}{\ell}+\frac{r}{\ell}\right)}=\frac{\ell-a}{h+r}
$$

$$
= \left(\frac{h}{\ell} + \frac{r}{\ell}\right) \sin \theta_{limit}
$$

$$
\frac{h}{e} + \frac{r}{e} \bigg) \sin \theta_{\text{limit}} = \frac{h - r}{e} \frac{a_x}{g}
$$

For the static case $(a_x = 0)$

$$
g(\ell-a)
$$

$$
r+h
$$

Deceleration: "Leave one car length per 10 mph"

Deceleration

 $V = 60$ *mph*, $\ell = 4m \implies 24$ m to stop

 $s =$ 1 2 at^2 ; $v = at \implies s =$

 $a_{decel} =$ (26*.*8 *m/sec*)² $\frac{2(24m)}{2(24m)} = 14.96$ *m sec*

for Earth, $g = 9.8$

*m sec*² $\implies a_{tot} = 1.84$ *g*

1 2 v^2 *a* $\implies a =$ 1 2 v^2 *s*

U N I V E R S I T Y O F

MARYLAND

Deceleration Stability Limits (Level Ground)

$$
\frac{a}{h+r} = \frac{1}{g}
$$

Less stable in lower gravity

60 mph panic stop on Earth= 10 mph panic stop on Moon

For given *a h* + *r* : *a* $h + r \mid_{limit}$ $\propto g$ S_{min} \propto 1 *^g* 60 mph panic stop on Moon requires 147 m

Inertially-Limited Acceleration

τ + *hm dv dt* $= mg(\ell - a)$

T

$$
\tau = Tr
$$

\n
$$
T = m \frac{dv}{dt}
$$

\n
$$
\tau = rm \frac{dv}{dt}
$$

[∑]moments about rear axle at torque limit

rm dv dt + *hm*

$$
\frac{dv}{dt} = mg(\ell - a)
$$

dv dt

lim

$$
= g \frac{\ell - a}{r + h}
$$

 $l = 2.29 m$ $r = 0.41$ *m* $h = 0.51$ *m a* = 1.14 *m*

> Moon: $0 \rightarrow 10$ kph (2.78 m/sec) $\Rightarrow 1.4$ sec $0 \rightarrow 60$ *mph* (26.8 *m*/*sec*) \Rightarrow 13.4 *sec*

Inertially-Limited Acceleration

Lunar Roving Vehicle:

