

Terramechanics 2: Traction

- Slip
- Grousers
- Drawbar Pull

1

© 2024 University of Maryland - All rights reserved <http://spacecraft.ssl.umd.edu>

Shearing Strength of Soil

$$
\text{an}\,\phi=c_0+\frac{W}{A}\tan\phi
$$

We want to know the maximum shear stress the soil can accommodate to find maximum tractive force of wheel

 $\tau \equiv$ shearing resistance per unit area

 $\tau = c_0 + \sigma$ ta

 $\sigma \equiv$ normal stress on the soil

 $H_0 \equiv$ ideal soil thrust

 $H_0 = Ac_0 + W \tan \phi$

Wheel Slip Ratio

- Wheel circumferential speed ωr will never exactly match vehicle speed *V*
- The difference is slip ratio: $s \equiv 1 - \frac{V}{A}$
- If $\omega r = V$ then $s = 0$
- If $\omega r > V$ then $0 < s < 1$
- If $\omega r \gg V$ (or $V = 0$) then $s = 1$
- If $\omega r < V$ (deceleration) then $-1 < s < 0$ *ωr*
- New definition becomes s_d =

ωr

 $\frac{1}{V}$ − 1

Tractive Force per (Smooth) Wheel

s = wheel slip ratio $\phi =$ soil angle of internal friction $K =$ shear deformation modulus $A = \text{area of contact} = b\ell$ $H = (Ac + W \tan \phi)$ *c* = soil cohesion

 $\ell =$ length of contains

$$
b)\left[1-\frac{K}{s\ell}\left(1-e^{\frac{-st}{K}}\right)\right]
$$

ntact patch
$$
=
$$
 $\frac{D}{2}$ cos⁻¹ $\left(1 - \frac{2z}{D}\right)$

Shear displacement j

Shear Deformation Modulus

- Wheel drives in regolith…
- Regolith particles around the contact area are sheared by the rotational and sideslip motions of the wheel, and…
-
- The shear stress develops based on the displacement of the regolith • Shear stress increases with increasing shear displacement
- Shear deformation modulus is a parameter of the surface and is determined experimentally
- Typically *K*=1.8 cm

From Hiroaki Inotsume, "Analysis of Angle of Attack for Efficient Slope Ascent by Rovers" CMU-RI-TR-15-22, Carnegie Mellon University, August 2015

Grousers (on Tracked Vehicle)

U N I V E R S I T Y O F MARYLAND

Grousers (MSL Wheels)

ENAE 788X - Planetary Surface Robotics

Mars Rover Wheels

U N I V E R S I T Y O F MARYLAND

Terramechanics Test Rig (CMU)

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International on *Robots and Systems*

U N I V E R S I T Y O F MARYLAND

Wheel sinkage measurement

Load cell for drawbar pull measurement

Half-width wheel pressed against glass

Terramechanics Test Rig (CMU)

Free to translate vertically

Glass at wheel center plane

Subsurface soil particles and rim imaged

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International on *Robots and Systems*

U N I V E R S I T Y O F MARYLAND

Soil Flow Visualization

Flow velocity magnitude

Shear interface

Flow direction

11

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International (*Robots and Systems*

U N I V E R S I T Y O F

MARYLAND

Periodic Soil Shearing by Grousers

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International o *Robots and Systems*

Soil Flow with 16 Grousers

U N I V E R S I T Y O F MARYLAND *Robots and Systems*

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International d

U N I V E R S I T Y O F MARYLAND

Soil Flow with 48 Grousers

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International or *Robots and Systems*

U N I V E R S I T Y O F

MARYLAND

Soil Excavation by Grousers

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International on *Robots and Systems*

U N I V E R S I T Y O F

MARYLAND

Wheel Parameters

z

 ω

K. Skonieczny, S. Moreland, and D. Wettergreen, "A Grouser Spacing Equation for Determining Appropriate Geometry of Planetary Rover Wheels" 2012 IEEE/RSJ International o *Robots and Systems*

Minimum Grouser Condition

 $t_{grouser \ contact} \leq t_{rim \ contact}$

 Δx

 v

 ψ

 ω

 $\Rightarrow v = \omega r(1 - s)$

 Δx

Grouser-Soil Contact Geometry

U N I V E R S I T Y O F MARYLAND

Geometric Derivation of Grouser Spacing

$$
\overline{AC} = \sqrt{(r+h)^2 - (r-z)^2} \qquad \overline{AB} = \sqrt{r^2 - (r-z)^2}
$$

$$
\overline{BC} = \overline{AC} - \overline{AB} = \Delta x
$$

$$
\psi \le \frac{1}{r(1-s)} \left[\sqrt{(1+h)^2 - (1-z)^2} - \sqrt{1 - (1-z)^2} \right]
$$

$$
\psi \le \frac{1}{(1-s)} \left[\sqrt{\left(1 + \frac{h}{r}\right)^2 - \left(1 - \frac{z}{r}\right)^2} - \sqrt{1 - \left(1 - \frac{z}{r}\right)^2} \right]
$$

$$
\psi \le \frac{1}{(1-s)} \left[\sqrt{\hat{h}^2 + 2\hat{h} + 2\hat{z} - \hat{z}^2} - \sqrt{2\hat{z} - \hat{z}^2} \right]
$$

Required Grouser Spacing

Number of Grousers in Ground Contact

Number of grousers = *N* Angle between grousers $\equiv \psi =$ 2π *N* LRV example: choose $N = 16$ $2\pi r$ $N\ell$ $N_q=1.3\approx 1$ $2\pi r$ *N*

 $z = 1.812$ *cm* $r = 40.6$ *cm* Number of grousers in ground contact $\equiv N_g =$ $\text{Distance between groups} \equiv \ell_g = \psi r =$

UNIVERSITY OF MARYLAND **Tractive Force per Wheel (With Grousers)** $h =$ height of grouser $s =$ wheel slip ratio (typ. 0.02 -0.05) $\ell =$ length of contact patch = *D* 2 $A = \text{area of contact} \cong b\ell$ ϕ = soil angle of internal friction = 35^o $K =$ shear deformation modulus = 1.8 cm All values typical for lunar soil N_q = number of grousers in contact with ground $H = \left| b\ell c \right| (1 +$ 2*h* $\binom{b}{b}$ *N*_g + *W* tan ϕ (1 + 0.64) *h b* arctan *b* $c =$ soil cohesion $= 0.017$ N/cm²

Terramechanics 2: Traction \cos^{-1} $\left(1-\frac{2z}{D}\right)$ *D* ⇥ *h*)] [$1 - \frac{K}{4}$ $\frac{dS}{dt}$ (1 − $e^{-\frac{S\ell}{K}}$

Effect of Slip Ratio on Wheel Thrust

23

$DP = H - (R_c + R_b + R_g + R_r)$

- DP: Drawbar pull (residual drive force)
- H: Maximum tractive force of wheels
- R_c: Compaction resistance
- Rb: Bulldozing resistance
- Rg: Gravitational resistance
- Rr: Rolling resistance (internal)

Basic Equation of Vehicle Propulsion

Drawbar Pull vs. Slip (per wheel)

• Braking is more complicated than sticking $s < 0$ into the equation for H

Some Notes on Terramechanics

- This is the simplest approach to calculating wheel-soil interactions
- Real-world issues not modeled include
	- Non-homogeneities
	- Soil layering
	- Soil transport under wheel
- This technique is conservative in estimating drawbar pull
- more to come

