Suspension Systems

e Obstacle climbing with multiwheel systems
e Planar rocker analysis

e Planar rocker-bogey analysis

e Suspension dynamics

e 3D vehicle wheel loading

* Spring-damper suspension dynamics
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Four-Wheeled Vehicle Climbing a Wall

(N2

from Howard Eisen, “Scale and Computer Modeling ot Wheeled Vehicles tfor Planetary Exploration” S.M. Thests,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Required Traction for Wall Climbing
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from Howard Eisen, “Scale and Computer Modeling ot Wheeled Vehicles tor Planetary Exploration” S.M. Thests,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Wheel Interaction with Slope
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0 = cos™! (r
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from Howard Eisen, “Scale and Computer Modeling ot Wheeled Vehicles tfor Planetary Exploration” S.M. Thests,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Equations for Slopes under Wheels

Sum of Horizontal forces:
UN, sin ¢, + N, cos ¢, + ulN, singp; + N, cos p; = W =0
Sum of vertical forces:
uN, cos ¢, — N, sin ¢, + ulN,cos ¢y — N, sin¢, =0
Sum of forces around the rear axle:
(IMNZI‘ — W(L — a) + N,Lcos ¢, + uN, (r+ Lsing,) = 0
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Bump/Slope Traction Requirements
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from Howard Eisen, “Scale and Computer Modeling ot Wheeled Vehicles tfor Planetary Exploration” S.M. Thests,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Six-Wheel Articulated Body Rover
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fromHoward Elsen ‘Scale andComputer Modeling of Wheeled Vehicles for Planetary Exploration” S.M. Thesis,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Model of Six-Wheel Vehicle

cml forward
j 8 cm2 >

1
H

o fofe—d—>fe—c—sfa—b—sle——a —]
Sum of vertical forces:
Ny + ulN, + N, — Wi —Wb =0
Sum of hotizontal forces:
N3 — Ny + uN; =0
Sum of moments for front body around pitch axis
uN (r+e)+N;(a+b+c)+ uN,(r+c)+ —-N,e—Wi(b+c¢c) =0

Sum of moments for rear body around pitch axis
Wbd + uN;(r+¢) = N3y(d+1) =0
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Navtest Rover with Walls and Slopes
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from Howard Eisen, “Scale and Computer
Modeling ot Wheeled Vehicles for Planetary
Exploration” S.M. Thesis,
Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, May, 1990
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Six-Wheel Rover, Slope Climbing

Tractive Coefficient Required
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Wall Angle (deg)
from Howard Eisen, “Scale and Computer Modeling ot Wheeled Vehicles tor Planetary Exploration” S.M. Thests,

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990
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Four-Wheel Rocker Suspension
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Six-Wheel Rocker-Bogey Suspension

Suspension Systems
17 ENAE 788X - Planetary Surface Robotics



Kinematics of Planar Rocker-Bogey
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Rocker-Bogey Wheel Force Distributions
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Kinematics of Planar Rocker-Bogey
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Level Ground: 0, = 0, = 0
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Level Ground, Static: 0, =0, =0,7T, =T, =17,=0
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o d d
Level Ground, Static: x = 0, Z—B = z_R = 0.5
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Level Ground, Static: x = 0, % — 0.5, % — 0.333
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Static Weight Distribution Revisited

e Previous analysis approached static weight distribution of vehicles with
no suspensions or purely kinematic suspension systems (e.g., rocker and
rocker-bogey systems)

e Four-wheel fixed suspension “cheated” by having one wheel off the
ground

— Three conservation equations: ) wheel forces=weight, » roll torques=0; ) pitch
torques=0
— Three unknowns (weight on three wheels on ground)

— =>bStatically determinate system

UNIVERSITY OF Suspension Systems
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N-Wheeled Independent Suspension

e Force on wheel dependent on deflection of suspension spring

e Explicit solution only available for three-wheeled vehicle (only three
constraint equations)

e Result of suspension and terrain is the height, pitch angle, and roll angle
of vehicle chassis (three unknowns)

e Parallel actuator forward kinematics problem

e Solve via assumed body pose and use of gradient search techniques for
brute force solution
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Vehicle Definition in Vector Form

Location of wheels (vehicle frame)
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Y1 Y2 V3 )4
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Locating Vehicle in Global Coords
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Conversion to Base Coordinates

c 0 s¢ x
—s¢ps0  cO  cgsO y,
—s¢pcld —s0 cpcO z,

0 0 0 1

X1, = [TIIX,],
X, ], = [TI[X,],

Choose a translation vector that keeps vehicle origin
directly above base frame origin

Al
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Solution Algorithm
e Assumed 6, ¢, and z. produces wheel heights 7,

o Spring compression X, = £, = Z,, + Zopstacie
e Spring force F spr(i) = KspriiyXspr(i
e Constraint equations R

Z spr(i) —
n wheels

Z F Spr(i)xw(i) + vacg =0
n wheels

Z Fopriwiiy T Wideg = 0

e [terate for 0, ¢, and z. to meet constramts

@ grai ot Suspension Systems
~ W
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Apollo LRV Example Data

1.143 —-1.143 1.143 —1.143
0914 0914 -0914 -0914
0 0 0 0
1 1 1 1

(X ], =

W = 1069 N (lunar)
KS

ring = 0.5 m (unloaded)

K, pyine = 2000 N/m
~0.2
1
0.5
1

[X,], =
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Apollo LRV on Level Ground

C.G. at LRV geometric center Pitch=0°; Roll=0
1.143 —-1.143 1.143 —1.143
0914 0914 -0914 -00914
0.366 0.366 0.366 0.366
1 1 1 1

[F, ] =1[267 267 267 267] (N)

(X ], =

C.G. at LRV nominal location Pitch=—1.24°; Roll=0°

1.143 —-1.143 1.143 —1.143

0914 0914 -0914 -0914

0.391 0342 0391 0.342
1 1 1 1

[F 1=1[218 317 218 317] (N)

-l
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Apollo LRV on Obstacles

Right front wheel on 30cm obstacle Pitch=—5.2°; Roll=-5.1°

1.138 —1.138 1.138 —1.138

0.901 0920 -0.920 -0.901

0.627 0.419 0.464 0.256
1 1 1 1

[F, ] =1[347 162 73 488] (N)

(X, =

RF wheel in 10cm hole; RR wheel on 30cm obstacle
Pitch=—4.1°; Roll=—3.4°
1.140 —-1.140 1.140 —1.140
0918 0908 -—-0.908 —-0.918

Rl = 0.390 0.552 0.281 0.443
1 1 ] ]
[F, ] =020 497 438 114] (N)
UNIVERSITY OF Suspension Systems
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Shortcomings and Extensions

e Made the simplifying assumption that suspensions are always vertical

— Vehicle deck angles are generally small

— Can add geometric specifications with more vectors

e Ignored the wheels

— “Body height” is really suspension height
— Could add in wheel radius for height off ground

— Subtract wheel weight and use “sprung weight”
 Assumed independent spring suspensions
e Neglected wheel torques
e Anything is possible with more math
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Suspension Systems
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Single-Wheel Dynamic Suspension Model

mZ‘I‘CZ‘I‘kZ:CZO‘I‘kZO

Undamped force-free equation: mZ +kz =0

Assume solution of the form z = Zcos w, t

7 = — Zw?’cosw,t

—mw? + k=0

UNIVERSITY OF Suspension Systems
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Single-Wheel Suspension Example

Mars Rover: m,,, = 500 kg = for each wheel, m = 125 kg

d = deflection of suspension (at rest) ~ 0.1 m

P F - mg

S B T

N

g ST 12,500 2000

W, = m
? ﬂ-

w, [ —

0,

= e—
In= 2
: -- Biheionindiy
fcrit —
v
SeEins e I Suspension Systems

MARYLAND 37 ENAE 788X - Planetary Surface Robotics



Multiwheel Suspension Dynamic Analysis

Bohn Ce F.'/C[.
'Two possible responses to hitting a bump = %‘2 g 2
/e {’/L/v
e Equations of motion (assuming small angles)
ky ¥ Bounce: mZ +k;(z—1,0) +k,(z+150) =0
Lf ; 2 oo
N Pitch: 1.0+ kd, (z—1,0) + kL, (z+ L,0) =0
Solve as a set of coupled differential equations
ke+ k. kl, — kil kel? + k15
let D, =-2 D= e — ) =
m m 1,
UNIVERSITY OF Suspension Systems

MARYLAND 38 ENAE 788X - Planetary Surface Robotics



Rewrite 1n terms of D wvariables

74+ D;z+ D0 =0 0+ D0+—z7=0

D, is the coupling coefficient - equations are independent it D, =0 = k| = k,/,
It D, = 0, force @ CG only produces bounce w,, = 4/D,

torce elsewhere produces pitch @, = 4/D;
Assume D2 # 0

z=/Ccosw,t 0= 0Ocosw,t

UNIVERSITY OF Suspension Systems
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D D =0
r—22Z+(D3—a),%)6’=O r_22 Dg—a)nz
D2
'y
D,+D 1 2 D3
57 2\ 2
UNIVERSITY OF Suspension Systems
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D1+D3 1 2 D2
N

D, +D 1 » D3

o _ 1 < o _ 2
Wy = > \ 7 (Dl D3) + r}?

Example: kf = k. =2000 N/m (Moon)

[L=1m L=2m
ml*

=——=1,=375 kg —m*=>r+y=075m

UNIVERSITY OF Suspension Systems
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4000 N/m 1
500 kg sec?

2000 N/m (2 m) —2000 N/m (1 m) N

D, 4 — =4 m/sec?
500 kg kg
2 2 N2
- 2000 N/m(1 m)~ + 2000 N/m(2m)~ o6 7 L |
T 375 kg m? T kgm? \ sec?

@, = 2.63 radlsec = 0.42 Hz
w> = 17.33 £10.43

w, =35.67 radlsec = 0.84 Hz

&ﬁ \}/ R Suspension Systems
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Adding in Tire Mass and Stiffness

Sprung mass: mZ, + C (Z'S — Z'u) + K (ZS — Zu) =0

(( y
Sprun . : .
e 9 n 24 Unsprung mass: m,Z,+c, (Zu — Zs) + kS (zu — Zs)

+CuZ.u T kuzu — F(t) — CuZO T kuZO
Undamped force-free solutions
”lo(hxprh“)“ My /T'&u mgZ, + ks (ZS = Zu) =0
mesrfl
muzu . ks (Zu -— ZS) A" kuzu =0
~__ o 7, = £ ,COS W, t z, = £,COS W,
UNIVERSITY OF Suspension Systems
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\) SN u
= 0

—k k.+k —mw?

\) n

W (mums) + w? (—mSkS — mgk, — muks) + kk, =0
A=mm, B =m, (ks + ku) + m, Kk C=kk,

B —\/B%*—-4AC B +\/B?—4AC
—— () = —m m m———

“n A m A

UNIVERSITY OF Suspension Systems
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Example using Unsprung Mass

m, = 100 kg m, = 235 kg

E le:
P 22000 Nim k, = 10,000 N/m

A =2500 kg  B=125x10° kg*/sec2  C =2x 107 N*/m?

ra
®, =4.76 — = 0.8 Hz <= suspension frequency
sec

rad
w, =121.8 = 3.5 Hz <= wheel stiffness frequency
sec
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