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Liquid Rocket Engine Cutaway
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Thermal Rocket Exhaust Velocity

* Exhaust velocity 1s

y—1

v |20 1_(pe)7
\V‘l M Po

where

M = average molecular weight of exhaust

Joules

N = universal gas const.= 8314.3
mole °K

Y = ratio of specific heats =1.2
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Ideal Thermal Rocket Exhaust Velocity

* Ideal exhaust velocity 1s

v - |2
“ \Yy-1 M
* This corresponds to an ideally expanded nozzle

* All thermal energy converted to kinetic energy of
exhaust

* Only a function of temperature and molecular
weight!
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Thermal Rocket Performance

* Thrust is
I = mVe + (pe - pamb)Ae
* Effective exhaust velocity

T=mczc=ve+(pe_pamb)14-e (IS]?:i)
m

* Expansion ratio

1 L rl
i_(y+l)ﬁ(&)y )/+11 (pe)V
A, \ 2 P V—l P
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A Word About Specific Impulse

* Defined as “thrust/propellant used”
— English units: Ibs thrust/(Ibs prop/sec)=sec
— Metric units: N thrust/ (kg prop/sec)=m/sec
* Two ways to regard discrepancy -

— “Ibs” 1s not mass in English units - should be slugs

— C¢

— Isp = “thrust/weight flow rate of propellant”

* If the real intent of specitic impulse is

T
Iy, = — and T = mV, then Iy, = V!
m
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Nozzle Design

 Pressure ratio p,/p., =100 (1470 psi-->14.7 psi)
A /JA=119

e Pressure ratio p,/p,=1000 (1470 psi-->1.47 psi)
A /JA=T1.6

« Difference between sea level and ideal vacuum V_

-1
L
Ve,ideal V p 0
* L vacunm—490 sec —-> 1 =333 sec
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Solid Rocket Motor
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Solid Propellant Combustion Characteristics

e T
i | [
E.f}| S R |[ ________ _,_|r
High burn rate
o | composite
68E T | | e
0.8 | — [ 77l ny i
. S S N B _68°F |
'
e FZ |
e — _T_%ﬁmﬂpe double _ !
b ! : | base propellant -
- | | =
& 0.3 IEU‘F!-r-l‘:.'-;’- — : E
E BOEF—T . ) 5
» | =30FT7 o |
E 0.2 i- - 'T - perchiorate propellant | E :
= ‘High energy | 2 |
N Ao ™ ; 140°F & |
romposite | “
0
oo8| I e
0,06 —= e LT : Ti
0.05 — TComposite ammenium. — ——— ime
[ | f [ nitrate protellant 5
U.D‘i[—-r.- _i.._ !__;_-I_....._l. - —_l_ I
I:I_EI3| . ! [ ! :

300400 &00 1000 2000 3000
Chamber pressure, psi

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Solid Grain Configurations
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From G. P. Sutton, Rocket Propulsion Elements
(5th ed.) John Wiley and Sons, 1986
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Short-Grain Solid Configurations

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John
Wiley and Sons, 1986

"~—"" Finocyl (case bonced) Spherical (case -bondad) with slots and cylinder
@ UNIVERSITY OF Propulsion and Power Systems Design
- ,// M ARYL AND I ENAE 791 - Launch and Entry Vehicle Design



Gemini Retrograde Engine
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Advanced Grain Configurations

Single grain, Boost-sustain-boost,
with differant burning areas
{all radial burning}

From G. P. Sutton, Rocket Propulsion Element e
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Liquid Rocket Engine

-2 rocket engine (left), with its pumps and lines installed. The basic engine
structure is built up from a series of hollow tubes (right).

A completed J
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Liquid Propellant Feed Systems
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Space Shuttle OMS Engine
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Turbopump Fed Liquid Rocket Engine
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Sample Pump-fed Engine Cycles
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Gas Generator Engine Schematic

Oxidizer Pump  Gas Turhine Fuel Pump
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SpaceX Merhn 1d Engmes
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Falcon 9 Octoweb Engine Mount
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Staged-Combustion Engine Schematic

Fuel Pump Turbine Oxidizer Pump

ombustion
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Nozzle
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RD-180 Engine(s) (Atlas V)
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SSME Powerhead Configuration

SSME POWERHEAD COMPONENT ARRANGEMENT
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SSME Engine Cycle

SSME FLOW DIAGRAM
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Liquid Rocket Engine Cutaway

)

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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H-1 Englne In]ector Plate
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Injector Concepts
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.)
John Wiley and Sons, 1986
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TR-201 Engine (LM Descent/Delta)

s
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Solid Rocket Nozzle (Heat-Sink)
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Ablative Nozzle Schematic
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Active Chamber Cooling Schematic
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From 6. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Boundary Layer Cooling Approaches
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Hybrid Rocket Schematic

e

\“- Gas gemratur Injector

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Hybrid Rocket Combustion

Oxidizer Temperature profile

spray 1\1 Velocity profile

_ Boundary layer edge

Combustion products zone

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Thrust Vector Control Approaches
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From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Reaction Control Systems

e Thruster control of vehicle attitude and translation
* “Bang-bang” control algorithms
* Design goals:

— Minimize coupling (pure forces for translation; pure
moments for rotation)except for pure entry vehicles

— Minimize duty cycle (use propellant as sparingly as

possible)
— Meet requirements for maximum rotational and linear
accelerations
@ UNIVERSITY OF Propulsion and Power Systems Design
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Single-Axis Equations of Motion

r =10
T .
—t=40
7 + C1
. . T . .

1 .
TR gt=04C

2 1
L7, -
att=0,0=0, = =t*+0,t =00,
1 /. . 2 T
3 (02 —0) =7 (0-00)
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Attitude Trajectories in the Phase Plane
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Gemini Entry Reaction Control System
RCS FUNCTION

RE-ENTRY
MODULE

YAW
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Apollo Reaction Control System Thrusters
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RCS Quad
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Apollo CSM RCS Assembly
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Lunar Module Reaction Control System
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LM RCS Quad
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Viking Aeroshell RCS Thruster
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Viking RCS Thruster Schematic
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Space Shuttle Primary RCS Engine

Columbium chamber with disilicide coating (0.003 n. thick)
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‘ From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Monopropellant Engine Design
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From 6. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Cold Gas Thruster Exhaust Velocity

Assume nitrogen gas thrusters

= ’y—l_

v — 2y %o 1_(&) ”
\fy—l M

b po -
M = 28 po = 300 psi
To = 300 K De = 2 PSI
R = 8314.3 v =1.4

1.4—1

2(1.4) 8314.3(300) 2\ 11 m

V, = (= = 689 —
\ 1.4 -1 28 { (300) } sec
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Cold-gas Propellant Performance

Theoretical
Molecular Density“ Specific Impulse
Propellant Mass (b/ft) (sec)
Hydrogen 2.0 1.21 296
Helium 4.0 2.37 179
Methane 16.0 12.10 114
Nitrogen 28.0 17.37 80
Air 28.9 19.3 74
Argon 39.9 27.60 57
Krypton 83.8 67.20 39
Freon 14 88.0 60.01 35
Carbon dioxide 44.0 Liquid 67

“ At 3500 psia and 0°C.

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
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Total Impulse

* Total impulse I; 1s the total thrust-time product for
the propulsion system, with units <N-sec>

I; =Tt = mu.t

”
t=""
m

It:pV?}€

* To assess cold-gas systems, we can examine total
impulse per unit volume of propellant storage

1y

V
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Performance of Cold-Gas Systems
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Self-Pressurizing Propellants (CO2)
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Self-Pressurizing Propellants (IN20)
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N20 Performance Augmentation

* Nominal cold-gas exhaust velocity ~600 m/sec

* N>O dissociates in the presence of a heated
catalyst 2NoO — 2N, + O
engine temperature ~1300°C
exhaust velocity ~1800 m/sec

* NOFB (Nitrous Oxide Fuel Blend) - store
premixed N>O/hydrocarbon mixture
exhaust velocity >3000 m/sec

@/ UNIVERSITY OF Propulsion and Power Systems Design

M ARYL AND 56 ENAE 791 - Launch and Entry Vehicle Design



Pressurization System Analysis

Adiabatic Expansion of Pressurizing Gas
y y y
pg,OVg = pg,ng + p|‘/|
Known quantities:

P,o=Initial gas pressure

P, +=Final gas pressure

P =Operating pressure of propellant
Initial Final tank(s)

V. =Volume of propellant tank(s)

Solve for gas volume V,
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Boost Module Propellant Tanks

* Gross mass 23,000 kg
— Inert mass 2300 kg
— Propellant mass 20,700 kg
— Mixture ratio N,O,/A50 = 1.8 (by mass)

* N,O, tank
— Mass = 13,310 kg

— Density = 1450 kg/m?3
— Volume = 9.177 m3 -->

e Aecrozine 50 tank
— Mass = 7390 kg
— Density = 900 kg/m3
— Volume = 8214 m? > r.;  =1.252 m
@/ UNIVERSITY OF Propulsion and Power Systems Design

M ARYL AND 58 ENAE 791 - Launch and Entry Vehicle Design

fophere— 1-299 M



Boost Module Main Propulsion

o 'Total propellant volume V,; = 17.39 m?

e Assume engine pressure p, = 250 pst

o Tank pressure p; = 1.25%p, = 312 psi

» Final GHe pressure p, (= 75 pst + p; = 388 psi
» Initial GHe pressure p, , = 4500 psi

* Conversion factor 1 psi = 6892 Pa
* Ratio ot specific heats for He = 1.67
(4500 psi )V "= (388 psi)V, " + (312 psi)(17.39 m’)

1.67

[ — 3 S
V,=3713m .
* Ideal gas: T=300°K --> Pr =557
p:497 kg/m3 (4500 psi = 31.04 MPa) MHe:185'1 kg :
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Autogenous Pressurization

* Use gaseous propellants to pressurize tanks with
liquid propellants

* Heat exchanger to gasity and warm propellants,
then route back into ullage volume

* Eliminates need for pressurized gases for ullage
and high-pressure storage bottles (e.g., Falcon 9
failures)

* Issue: start-up transient
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Energy and Power - Not the Same!!!

* Energy - the capacity of a physical system to do
work (J, N-m, kWhr)

* Power - time rate of change of energy (W, N-m/
sec, | /sec)

* We are interested in generating power, we store and
use ezergy at a given power level.
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Batteries

* Energy storage via chemical reactions
* Primary batteries - use once and discard
* Secondary batteries - rechargable

* Critical parameters
— Energy density

— Discharge rate
— Allowable depth of discharge

— Cycle life

— Temperature limits
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Primary Batteries

Lithium Lithium
Lithium sulfur carbon thionyl
Silver zinc dioxide monofluoride chloride
Energy density 130 220 210 275
(W h/kg)
Energy density 360 300 320 340
(W h/dm?)
Operating temp. 0-40 —50-75 7-82 —40-70
range (°C)
Storage temp. 0-30 0-50 0-10 0-30
range (°C)
Storage life 30-90 d (wet) 10 yr 2.y1° )
5 yr (dry)
Open circuit 1.6 3.0 3.0 3.6
voltage (V/cell)
Discharge voltage 1.5 2.7 249 3.2
(V/cell)
Manufacturer(s) Eagle-Picher, Honeywell, Eagle-Picher  Duracell,
Yardney Technical Power Electrochem,
Products Conversion Altus, ITT

“These cells are still in the development stage, and their storage life may be longer than that indicated.
From Pisacane and Moore, Fundamentals of Space Systems Oxford University Press, 1994
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Battery Application Domains
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Integrated Vehicle Fluids (IVF) System

FroLn M. Holguin, “EnablingrLong Duration Spaceflight via an Integrated Vehicle Fluid System” AIAA 2016-5495
UNIVERSITY OF Propulsion and Power Systems Design
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ULA IVF Concept

* 750cc internal combustion (piston) engine

powered by LOX/IL.H2 boil-off

* Engine powers generator to supply electrical
power (30V and 300V) to vehicle (also serves as a

starter)

* Compressor/heat exchanger increases pressure of
boil-off gases from propellant tank, and cools ICE

* Pressurized O2/H2 provides reaction control
system through thruster/gimbal assembly

Growth option: on-orbit refueling

o
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