Propulsion and Power Systems Design

- Rocket engine basics
- Survey of the technologies
- Propellant feed systems
- Propulsion systems design
- Energy storage devices

© 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Liquid Rocket Engine Cutaway

Thermal Rocket Exhaust Velocity

• Exhaust velocity is

$$V_{e} = \sqrt{\frac{2\gamma}{\gamma - 1} \frac{\Re T_{0}}{\overline{M}}} \left[1 - \left(\frac{p_{e}}{p_{0}}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$

where

 $\overline{M} = average \ molecular \ weight \ of \ exhaust$

 $\Re = universal \ gas \ const. = 8314.3 \frac{Joules}{mole^{\circ}K}$

$$\gamma \equiv ratio \ of \ specific \ heats \approx 1.2$$

ERSITYOF

Ideal Thermal Rocket Exhaust Velocity

• Ideal exhaust velocity is

$$V_e = \sqrt{\frac{2\gamma}{\gamma - 1} \frac{\Re T_0}{\overline{M}}}$$

- This corresponds to an ideally expanded nozzle
- All thermal energy converted to kinetic energy of exhaust
- Only a function of temperature and molecular weight!

Thermal Rocket Performance

• Thrust is

$$T = \dot{m}V_e + (p_e - p_{amb})A_e$$

• Effective exhaust velocity

$$T = \dot{m}c \Longrightarrow c = V_e + (p_e - p_{amb})\frac{A_e}{\dot{m}} \qquad \left(I_{sp} = \frac{c}{g_e}\right)$$

• Expansion ratio

IVERSITY OF

$$\frac{A_t}{A_e} = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}} \left(\frac{p_e}{p_0}\right)^{\frac{1}{\gamma}} \sqrt{\frac{\gamma+1}{\gamma-1}} \left[1 - \left(\frac{p_e}{p_0}\right)^{\frac{\gamma-1}{\gamma}}\right]$$

5

A Word About Specific Impulse

- Defined as "thrust/propellant used"
 - English units: lbs thrust/(lbs prop/sec)=sec
 - Metric units: N thrust/(kg prop/sec)=m/sec
- Two ways to regard discrepancy
 "lbs" is not mass in English units should be slugs
 Isp = "thrust/weight flow rate of propellant"

 If the real intent of specific impulse is

$$I_{sp} = \frac{T}{\dot{m}}$$
 and $T = \dot{m}V_e$ then $I_{sp} = V_e!!!$

Nozzle Design

- Pressure ratio p₀/p_e=100 (1470 psi-->14.7 psi)
 A_e/A_t=11.9
- Pressure ratio $p_0/p_e = 1000 (1470 \text{ psi-->}1.47 \text{ psi})$ $A_e/A_t = 71.6$
- Difference between sea level and ideal vacuum V_e

$$\frac{V_e}{V_{e,ideal}} = \sqrt{1 - \left(\frac{p_e}{p_0}\right)^{\frac{\gamma-1}{\gamma}}}$$

• $I_{sp,vacuum} = 455 \text{ sec } --> I_{sp,sl} = 333 \text{ sec}$

UNIVERSITY OFPropulsion and Power Systems DesignMARYLAND7ENAE 791 - Launch and Entry Vehicle Design

Solid Rocket Motor

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

8

Solid Propellant Combustion Characteristics

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

9

Solid Grain Configurations

10

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

Propulsion and Power Systems Design ENAE 791 - Launch and Entry Vehicle Design

Dendrite

(case bonded)

Short-Grain Solid Configurations

NIVERSITY OF ARYLAND 11 E

Gemini Retrograde Engine

12

Advanced Grain Configurations

13

Liquid Rocket Engine

A completed J-2 rocket engine (left), with its pumps and lines installed. The basic engine structure is built up from a series of hollow tubes (right).

14

Liquid Propellant Feed Systems

15

Space Shuttle OMS Engine

Turbopump Fed Liquid Rocket Engine

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986 UNIVERSITY OF Propulsion and Power Systems Design

17

ENAE 791 - Launch and Entry Vehicle Design

Sample Pump-fed Engine Cycles

Gas Generator Engine Schematic

19

WIVERSITY OF MARYLAND

SpaceX Merlin 1d Engines

20

Falcon 9 Octoweb Engine Mount

21

Staged-Combustion Engine Schematic

22

RD-180 Engine(s) (Atlas V)

23

SSME Powerhead Configuration

24

WNIVERSITY OF MARYLAND

SSME Engine Cycle

NIVERSITY OF

SSME FLOW DIAGRAM

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

25

Liquid Rocket Engine Cutaway

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986
UNIVERSITY OF
MARYLAND
26
ENAE 791 - Launch and Entry Vehicle Design

H-1 Engine Injector Plate

27

Injector Concepts

TR-201 Engine (LM Descent/Delta)

29

Solid Rocket Nozzle (Heat-Sink)

Ablative Nozzle Schematic

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

31

Active Chamber Cooling Schematic

Boundary Layer Cooling Approaches

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

33

N I V E R S I T Y O F

Hybrid Rocket Schematic

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

34

Hybrid Rocket Combustion

NIVERSITY OF

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

35

Thrust Vector Control Approaches

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

36

Reaction Control Systems

- Thruster control of vehicle attitude and translation
- "Bang-bang" control algorithms
- Design goals:
 - Minimize coupling (pure forces for translation; pure moments for rotation) except for pure entry vehicles
 - Minimize duty cycle (use propellant as sparingly as possible)

37

Meet requirements for maximum rotational and linear accelerations

Single-Axis Equations of Motion

38

$$\tau = I\theta$$

$$\frac{\tau}{I}t = \dot{\theta} + C_{1}$$
at $t = 0, \dot{\theta} = \dot{\theta}_{o} \implies \frac{\tau}{I}t = \dot{\theta} - \dot{\theta}_{o}$

$$\frac{1}{2}\frac{\tau}{I}t^{2} + \dot{\theta}_{o}t = \theta + C_{2}$$
at $t = 0, \theta = \theta_{o} \implies \frac{1}{2}\frac{\tau}{I}t^{2} + \dot{\theta}_{o}t = \theta - \theta_{o}$

$$\frac{1}{2}\left(\dot{\theta}^{2} - \dot{\theta}_{o}^{2}\right) = \frac{\tau}{I}\left(\theta - \theta_{o}\right)$$

Attitude Trajectories in the Phase Plane

Gemini Entry Reaction Control System

RCS FUNCTION

40

Apollo Reaction Control System Thrusters

41

RCS Quad

42

Apollo CSM RCS Assembly

43

Lunar Module Reaction Control System

44

ARYLAND

LM RCS Quad

45

Viking Aeroshell RCS Thruster

46

Viking RCS Thruster Schematic

VERSITY OF

47

Space Shuttle Primary RCS Engine

Monopropellant Engine Design

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

Propulsion and Power Systems Design ENAE 791 - Launch and Entry Vehicle Design

49

Cold Gas Thruster Exhaust Velocity

Assume nitrogen gas thrusters

$$V_{e} = \sqrt{\frac{2\gamma}{\gamma - 1} \frac{\Re T_{0}}{\bar{M}}} \left[1 - \left(\frac{p_{e}}{p_{o}}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$

$$\bar{M} = 28 \qquad p_{0} = 300 \ psi$$

$$T_{0} = 300 \ K \qquad p_{e} = 2 \ psi$$

$$\Re = 8314.3 \qquad \gamma = 1.4$$

$$V_e = \sqrt{\frac{2(1.4)}{1.4 - 1} \frac{8314.3(300)}{28} \left[1 - \left(\frac{2}{300}\right)^{\frac{1.4 - 1}{1.4}}\right]} = 689 \frac{m}{sec}$$

IVERSITY OFPropulsion and Power Systems DesignARYLAND50ENAE 791 - Launch and Entry Vehicle Design

Cold-gas Propellant Performance

Propellant	Molecular Mass	Density" (lb/ft ³)	Theoretical Specific Impulse (sec) 296	
Hydrogen	2.0	1.21		
Helium	4.0	2.37	179	
Methane	16.0	12.10	114	
Nitrogen	28.0	17.37	80	
Air	28.9	19.3	74	
Argon	39.9	27.60	57	
Krypton	83.8	67.20	39	
Freon 14	88.0	60.01	55	
Carbon dioxide	44.0	Liquid	67	

"At 3500 psia and 0°C.

VERSITY OF

From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

51

Total Impulse

ΙVERSITΥΟΓ

• Total impulse I_t is the total thrust-time product for the propulsion system, with units <N-sec>

 $I_t = Tt = \dot{m}v_e t$ $t = \frac{\rho V}{\dot{m}}$ $I_t = \rho V v_e$

• To assess cold-gas systems, we can examine total impulse per unit volume of propellant storage

52

$$\frac{I_t}{V} = \rho v_e$$

Performance of Cold-Gas Systems

Self-Pressurizing Propellants (CO₂)

Self-Pressurizing Propellants (N₂O)

55

N₂O Performance Augmentation

- Nominal cold-gas exhaust velocity ~600 m/sec
- N₂O dissociates in the presence of a heated catalyst $2N_2O \longrightarrow 2N_2 + O_2$ engine temperature ~1300°C exhaust velocity ~1800 m/sec
- NOFB (Nitrous Oxide Fuel Blend) store premixed N₂O/hydrocarbon mixture exhaust velocity >3000 m/sec

56

Pressurization System Analysis

57

Adiabatic Expansion of Pressurizing Gas

 $p_{g,0}V_g^{\gamma} = p_{g,f}V_g^{\gamma} + p_{\parallel}V_{\parallel}^{\gamma}$

Known quantities:

P_{q,0}=Initial gas pressure

P_{a.f}=Final gas pressure

P_L=Operating pressure of propellant tank(s)

V_L=Volume of propellant tank(s)

Solve for gas volume V_a

Boost Module Propellant Tanks

- Gross mass 23,000 kg
 - Inert mass 2300 kg
 - Propellant mass 20,700 kg
 - Mixture ratio $N_2O_4/A50 = 1.8$ (by mass)
- N_2O_4 tank
 - Mass = 13,310 kg
 - Density = 1450 kg/m³
 - Volume = 9.177 m³ --> r_{sphere}=1.299 m
- Aerozine 50 tank
 - Mass = 7390 kg

UNIVERSITY OF

ARYLAND

- Density = 900 kg/m³
- Volume = 8.214 m³ --> r_{sphere}=1.252 m

58

Boost Module Main Propulsion

- Total propellant volume $V_L = 17.39 \text{ m}^3$
- Assume engine pressure $p_0 = 250$ psi
- Tank pressure $p_L = 1.25*p_0 = 312$ psi
- Final GHe pressure $p_{g,f} = 75 \text{ psi} + p_L = 388 \text{ psi}$
- Initial GHe pressure $p_{g,0} = 4500 \text{ psi}$
- Conversion factor 1 psi = 6892 Pa

IVERSITY OF

- Ratio of specific heats for He = 1.67 $(4500 \ psi)V_g^{1.67} = (388 \ psi)V_g^{1.67} + (312 \ psi)(17.39 \ m^3)^{1.67}$ • $V_s = 3.713 \ m^3$
- $V_g = 3.713 \text{ m}^3$ • Ideal gas: $T=300^{\circ}\text{K} \longrightarrow \rho_{He} = \frac{p_{g,0}\overline{M}}{\Re T_0}$ $\rho=49.7 \text{ kg/m}^3$ (4500 psi = 31.04 MPa) $M_{\text{He}}=185.1 \text{ kg}$

59

Autogenous Pressurization

- Use gaseous propellants to pressurize tanks with liquid propellants
- Heat exchanger to gasify and warm propellants, then route back into ullage volume
- Eliminates need for pressurized gases for ullage and high-pressure storage bottles (e.g., Falcon 9 failures)

60

• Issue: start-up transient

Energy and Power - Not the Same!!!

- Energy the capacity of a physical system to do work (J, N-m, kWhr)
- Power time rate of change of energy (W, N-m/ sec, J/sec)
- We are interested in generating *power*; we store and use *energy* at a given *power* level.

6

Batteries

- Energy storage via chemical reactions
- Primary batteries use once and discard

62

- Secondary batteries rechargable
- Critical parameters
 - Energy density
 - Discharge rate
 - Allowable depth of discharge
 - Cycle life
 - Temperature limits

Primary Batteries

VERSITY OF

	Silver zinc	Lithium sulfur dioxide	Lithium carbon monofluoride	Lithium thionyl chloride
Energy density (W h/kg)	130	220	210	275
Energy density (W h/dm ³)	360	300	320	340
Operating temp. range (°C)	0–40	- 50-75	?-82	-40-70
Storage temp. range (°C)	0–30	0–50	0–10	0–30
Storage life	30–90 d (wet) 5 yr (dry)	10 yr	2 yr ^a	5 yr ^a
Open circuit voltage (V/cell)	1.6	3.0	3.0	3.6
Discharge voltage (V/cell)	1.5	2.7	2.5	3.2
Manufacturer(s)	Eagle-Picher, Yardney Technical Products	Honeywell, Power Conversion	Eagle-Picher	Duracell, Electrochem, Altus, ITT

^aThese cells are still in the development stage, and their storage life may be longer than that indicated.

From Pisacane and Moore, Fundamentals of Space Systems Oxford University Press, 1994

63

Battery Application Domains

ERSIT

OF

From Wertz, Everett, and Puschell, Space Mission Engineering: The New SMAD Microcosm Press, 2011

64

Integrated Vehicle Fluids (IVF) System

ULA IVF Concept

IVERSITY OF

- 750cc internal combustion (piston) engine powered by LOX/LH2 boil-off
- Engine powers generator to supply electrical power (30V and 300V) to vehicle (also serves as a starter)
- Compressor/heat exchanger increases pressure of boil-off gases from propellant tank, and cools ICE
- Pressurized O2/H2 provides reaction control system through thruster/gimbal assembly

66

• Growth option: on-orbit refueling