#### Launch Abort Systems

- First, a word from our sponsor (planar state equations for launch)
- Apollo launch escape system (LES)
- Discussion of requirements (HL-20)
- Shuttle abort modes
- Orion launch abort system (LAS)
- Dragon abort
- New Shepard abort



# Coordinate System for Launch Trajectories



from Edberg and Costa, Design of Rockets and Space Launch Vehicles



## Planar State Equations for Launch Trajectories

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{T}{m} - \frac{D}{m} - g\sin\gamma$$

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = -\left(\frac{g}{v} - \frac{v}{R+h}\right)\cos\gamma$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = v \sin \gamma$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{R_0}{R_0 + h} v \cos \gamma$$

# Ancillary Equations for Launch Trajectories

$$m(t) = m_0 - \dot{m}t$$
; mass flow  $\dot{m} = \frac{T}{g_0 I_{sp}}$ 

$$D = \frac{1}{2} \rho v^2 c_D S_{ref}; c_D \text{ is a function of Mach number}$$

$$P_{\infty}(h) = P_0 e^{-h/h_s}$$

$$\rho(h) = \rho_0 e^{-h/h_s}$$

$$g(h) = \frac{g_0}{(1 + h/R_0)^2}$$



# Free-Body Diagram of Launch Vehicle



from Edberg and Costa, Design of Rockets and Space Launch Vehicles



# Dynamic Equations Including Steering

$$ma_t = m \frac{\mathrm{d}v}{\mathrm{d}t} = T\cos(\alpha + \delta) - D - mg\sin\gamma$$

$$ma_n = mv\frac{d\gamma}{dt} + \frac{mv^2\cos\gamma}{R_0 + h} = L - mg\cos\gamma + T\sin(\alpha + \delta)$$

$$M - l_{CG}T\sin\delta + l_{AC}L\cos\alpha = I_{pitch}\frac{\partial^2\theta}{\partial t^2}$$

For  $\alpha$ ,  $\delta$  small...

$$ma_{t} = m\frac{\mathrm{d}v}{\mathrm{d}t} = T - D - mg\sin\gamma$$

$$mv\frac{\mathrm{d}\gamma}{\mathrm{d}t} = L - mg\cos\gamma - \frac{mv^{2}\cos\gamma}{R_{0} + h}$$



## Atlas-Agena Launch Failure



### Mercury Pad Abort Test



# Gemini Ejection Seats



#### Gemini 6A Pad Abort



# Apollo Launch Escape System

NASA-5-66-554 JAN 19 NOSE CONE AND Q-BALL BALLAST ENCLOSURE ASSEMBLY -PITCH CONTROL MOTOR CANARDS COMPARTMENT LAUNCH ESCAPE TOWER MOTOR JETTISON MOTOR LAUNCH ESCAPE STRUCTURAL  $+x_c$ SKIRT VEHICLE CONFIGURATION TOWER STRUCTURE BOOST PROTECTIVE COVER -TOWER SEPARATION BOLTS COMMAND MODULE

#### Apollo Abort Modes



from Hyle et. al., "Abort Planning for Apollo Missions" AIAA 1970-0094



# Apollo In-Flight Abort Test



#### Shuttle Ascent Abort Profile



from Henderson and Nguyen, "Space Shuttle Abort Evolution" AIAA 2011-7245



#### Shuttle Return to Launch Site (RTLS)



from Henderson and Nguyen, "Space Shuttle Abort Evolution" AIAA 2011-7245



### Shuttle Transatlantic Abort Landing (TAL)



from Henderson and Nguyen, "Space Shuttle Abort Evolution" AIAA 2011-7245



# Crew Egress Following Emergency Landing







#### STS Abort Prior to 51-L





#### Shuttle Abort Post-2000



#### Shuttle Bail-out Certification Tests



#### Titan IIIC Blast Pressures



from Naftel and Talay, "Ascent Abort Capability for the HL-20" JSR v30 n5, Sept-Oct 1993



#### Flight Time to 10psi Overpressure Limit



from Naftel and Talay, "Ascent Abort Capability for the HL-20" JSR v30 n5, Sept-Oct 1993



#### Human Acceleration Limits



from Naftel and Talay, "Ascent Abort Capability for the HL-20" JSR v30 n5, Sept-Oct 1993



## Orion Launch Abort System







from Sullivan, Bocam, and Ascalera, "Development of the Orion PA-1 Launch Abort System" AIAA 2011-7129



#### Orion Pad Abort Test 1



#### Orion Abort Modes



from Sullivan, Bocam, and Ascalera, "Development of the Orion PA-1 Launch Abort System" AIAA 2011-7129



# Orion Flight Abort Test



# Base Drag Effects at Separation





# Orion Pad Abort Trajectory Performance





#### Orion Separation Distance for Pad Abort















**Early MLAS Concept** 

**Current MLAS Concept** 



### Max Launch Abort System Test



## Effect of LAS Jettison on Payload







#### **QUICK SUMMARY of RESULTS:**

A) FRAG VELOCITY DISTRIBUTION. Propellant fragments expand...

60 70 80 90 100 110 120

TIME (sec, MET)

Analysis: Nominal

- as a spherical "shell" (i.e. of comparable velocity magnitudes leaving little distribution of propellant fragments within, or beyond, the "shell")
- At fairly "tight" ranges, from approximately 300-500 fps (some outliers, each side), with betas from ~20-700 lbm/sqft.
- Mass and count distributions comparable to the "FRAG" program, generated from studies such as the joint NASA/DOE/INSRP Explosion Working Group on the Titan 34D-9 and Challenger 51L.
- B) CAPSULE ~100% FRATRICIDE by SECONDARY RADIATIVE WILTING of NYLON CHUTES The capsule will not survive an abort between MET's of ~30 and 60 seconds as the capsule is engulfed until water-impact by solid propellant fragments radiating heat from 4,000F toward the nylon parachute material (with a melt-temperature of ~400F).





# Boeing Starliner Pad Escape System



# Original Orion Pad Escape System



# SpaceX LC40 Pad Escape System



## SpaceX Dragon Pad Abort Test



# Dragon Abort Profile



# SpaceX Dragon Pad Abort Test



## Dragon Pad Abort POV





# Boeing Starliner Pad Abort Test



## New Shepard In-Flight Abort Test

